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Abstract

We classify the smooth complete intersections with positive-definite intersection form on

their middle cohomology. There are two families. The first family are quadric hypersur-

faces in P4k+1 with k a positive integer. The middle cohomology is always of rank two

and the intersection lattice corresponds to the identity matrix. The second family are

complete intersections of two quadrics in P4k+2 (k a positive integer). Here the inter-

section lattices are the Γ4(k+1) lattices; in particular, the intersection lattice of a smooth

complete intersection of two quadrics in P6 is the famous E8 lattice.

i



Acknowledgments

First of all I thank my advisor, Professor Michael Roth—for his suggestion of the ques-

tion answered in this thesis, for his generous guidance and support throughout, for his

tremendous enthusiasm for interesting mathematics, for our weekly meetings, and for his

patience.

I thank fellow students, especially fellow algebraic geometry students Chris Dionne

and Nathan Grieve, for making the journey more fun.

I thank the Department of Mathematics and Statistics in general for financial support

during the two years of my studies.

I thank my parents for their love and support.

ii



Table of Contents

Abstract i

Acknowledgments ii

Table of Contents iii

1 Introduction 1

2 Preliminaries 6
2.1 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 The lattices Γ4k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The Hodge and Lefschetz decompositions of Hk(X,C) . . . . . . . . . . . . 12
2.3 Intersection theory and integral cohomology H●(X,Z) . . . . . . . . . . . . 17

2.3.1 Integral cohomology of Pn and Pa × Pb . . . . . . . . . . . . . . . . . . 18
2.3.2 Additive structure of H●(G(k,n),Z) . . . . . . . . . . . . . . . . . . . 19
2.3.3 Excess intersection formula . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Examples of smooth varieties with positive-definite intersection form 32
3.1 Projective spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Complete intersections with positive-definite intersection form, I 38
4.1 Intersection form and the complex De Rham cohomology . . . . . . . . . . . 38

4.1.1 The form Rk on the Lefschetz decomposition of Hk(X,C) . . . . . . 40
4.1.2 Hodge-Riemann bilinear relations . . . . . . . . . . . . . . . . . . . . 41

4.2 Which complete intersections have a positive-definite intersection form? . . 43
4.2.1 Proof of theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Complete intersections with positive-definite intersection form, II 56
5.1 Special forms of equations defining quadrics and complete intersections of

two quadrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 The cup product lattice on H2k(X(2)) ⊂ P2k+1 . . . . . . . . . . . . . . . . . 60
5.3 The cup product lattice on H4k(X(2,2)) ⊂ P4k+2 . . . . . . . . . . . . . . . . 65

5.3.1 The case k = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

iii



Chapter 1

Introduction

Let X be a smooth projective variety of dimension n over the complex numbers. It is

immediate from the Jacobian criterion and the holomorphic implicit function theorem

that X has the structure of a compact complex manifold. From this point of view,

X has a topology distinct from its Zariski topology—the so-called classical or analytic

topology—which is much better suited for applications of the classical machinery of al-

gebraic topology than the Zariski topology.

In this document, we are interested in the intersection form on the middle cohomology

of X (with X viewed with its analytic topology). We begin with its definition. Let

Hk(X,Z) denote the k-th singular cohomology group of X, let Hk(X,Z)tors denote the

subgroup of torsion elements in Hk(X,Z) and set Hk(X) ∶=Hk(X,Z)/Hk(X,Z)tors. We

have

Theorem (Poincaré duality). For all 0 ≤ k ≤ n, the cup product pairing

Hn−k(X)⊗ZH
n+k(X) ∪Ð→H2n(X) ≅ Z

is a perfect pairing.

In the case k = 0, Poincaré duality gives a unimodular bilinear form on Hn(X). We

call this form the intersection form or cup product form of X.
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The intersection form is an interesting invariant of a compact oriented topological

manifold. One striking result (due to Freedman) is that to each symmetric unimodular

form B there corresponds either a unique homeomorphism type of topological fourfolds

(if B is even) or exactly two distinct homeomorphism types (if B is odd) having B as

the intersection form on their middle cohomology. Hence, the homeomorphism type of a

topological fourfold is essentially determined by its intersection form.

Returning to smooth projective varieties, we begin with the following questions: given

X, what is the intersection form on X? Conversely, given a unimodular bilinear form B,

does there exist X with B as the intersection form on Hn(X)? These questions are hard

in the stated generality and we immediately begin to refine them. Observing that the

intersection form is symmetric when the (complex) dimension of X is even and alternating

when the dimension of X is odd by the identity α ∪ β = (−1)nβ ∪ α for α,β ∈ Hn(X),

we are led to recall the classification of alternating and symmetric unimodular bilinear

forms over the integers.

The case of alternating unimodular forms is not very interesting—up to isomorphism,

there is a single alternating unimodular form on Zr if r is even and none if r is odd.

The case of symmetric unimodular forms further splits into definite and indefinite

subcases. In the indefinite case, we have a complete classification: a form is completely

determined by its rank, signature and type 1. In particular, for a given rank r, the

number of distinct indefinite unimodular bilinear forms on Zr is bounded above by 2r.

These forms can be described as follows:

Type I (odd) case: Each form may be brought by a change of basis to one represented

by a diagonal matrix, with the diagonal entries equal to either +1 or −1 (and the

number of entries of each type is equal for any choice of basis bringing the Gram

matrix to this form). Letting b+ and b− denote the number of +1’s and −1’s on the

diagonal, respectively, the signature of the form is equal to b+ − b−, while the rank

is equal to b+ + b−. It is clear that knowing the signature and the rank determines

1Please see section 2.1 for definitions
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the form.

Type II (even) case: It may be shown that each form may be brought by a change of

basis to U⊕a⊕E⊕b
8 , where a is a nonnegative integer, b is an arbitrary integer, and

U and E8 = Γ8 are lattices described in section 2.1 ([13] Theorem V.5, pg. 54). The

signatures of the two lattices are σ(U) = (1+,1−) and σ(E8) = (8+,0−), so that the

signature of the form is equal to 8b. The rank is equal to 2a + 8∣b∣, so again we see

that the rank and signature determine the form.

In the definite case, we again split into positive-definite and negative-definite subcases.

However, there is no loss of generality in considering only one of the subcases (scaling a

form of one class by −1 gives a form of the other class). We note that, with X as before and

[H] ∈H1(X,Z) the class of a hyperplane section of X, we have [H]n ⋅ [H]n = deg(X) > 0.

Hence, the intersection form of a smooth projective variety is never negative-definite and

we focus on describing the positive-definite case.

Unfortunately, no complete classification of positive-definite symmetric unimodular

forms is known (to the author). It is known, however, that the number of distinct

isomorphism classes grows very rapidly past rank 24. In particular, recalling that the

rank of a form of type II must be divisible by 8, the number of distinct type II positive-

definite unimodular forms is given in the following table:

Rank 8 16 24 32 40

Number of distinct forms 1 2 24 ≥ 107 ≥ 1051

([12] pg. 28). The type I case exhibits even more rapid growth ([9] pg. 18). This

behaviour is quite different from the indefinite case, where the number of distinct indef-

inite forms grows linearly with the rank. Despite this, as a heuristic principle smooth

projective varieties with positive-definite intersection form are ‘rare’. For example, the

only Grassmannians with nonempty middle cohomology and positive-definite intersection

form are the two families G(1, n) and G(n − 2, n) (as demonstrated in chapter 3). The
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following result, proved as corollary 4.1 below, gives another illustration of our principle:

Theorem. With notation as above, if X has a positive-definite intersection form, then

the rank of the Néron-Severi group of X is one.

Many of the basic constructions one might want to use to produce examples of smooth

projective varieties with positive-definite intersection form strictly increase the Picard

rank. For example, this is true for taking products or blowing-up along a proper subva-

riety. So the above theorem fits the imprecise principle that smooth projective varieties

X with positive-definite intersection form are rare.

In this document, we study the intersection form on the middle cohomology of the

varieties in the following class:

Definition 1.1. A variety X ⊂ Pn+r of dimension n is called a complete intersection of

type (d1, . . . , dr) (here d1 ≤ ⋯ ≤ dr) if its ideal is generated by exactly r homogeneous poly-

nomials f1, . . . , fr in Pn+r of degrees d1, . . . , dr, respectively. We often denote a complete

interesection of type d ∶= (d1, . . . , dr) by X(d).

Our main result is a complete classification of the smooth complete intersections with

positive-definite intersection form—the following statement combines theorems 4.2, 5.1

and 5.4.

Theorem. The smooth complete intersections with positive-definite intersection form are

exactly:

1. The smooth quadric hypersurfaces in P4k+1 (k a positive integer), with intersection

form

⎛
⎜⎜
⎝

1 0

0 1

⎞
⎟⎟
⎠

and

2. The smooth complete intersections of two quadrics in P4k+2 (k positive), with inter-

section form Γ4(k+1).2

2Please see section 2.1 for a description of the lattices Γ4k.
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In particular, in line with the above, complete intersections with positive-definite

intersection form are ‘rare’ among all complete intersections.

In the rest of this document, we pursue a more-or-less direct path toward a proof of

the above theorem. Chapter 2 is devoted to preliminaries, in particular describing the

family of lattices Γ4n appearing in the statement of the theorem above and describing

the excess intersection formula. Explicit descriptions of the integral cohomology rings of

the projective spaces Pn and Grassmannians G(k,n) also appear in Chapter 2, making

it possible to analyze the question of which of the spaces Pn and G(k,n) have a positive-

definite intersection form in Chapter 3. In Chapter 4, we classify the types of complete

intersections with positive-definite form, using the Hodge-Riemann bilinear relations and

an inequality bounding the type of a complete intersection in terms of the coniveau of its

middle cohomology. In Chapter 5, we identify the lattices that appear by finding explicit

generating cycles in the middle cohomology.

We end this introduction by listing a few conventions. Throughout the following,

we shall be working over the complex numbers. In particular, dimensions are complex

dimensions unless otherwise stated. We often denote the dimension of a smooth projective

X by n. Finally, unless otherwise stated tensor products are to be taken over the integers.

5



Chapter 2

Preliminaries

2.1 Lattices

In this section, we recall some of the basic invariants of lattices mentioned in the intro-

duction and describe the family of lattices Γ4k. Our main references are [12] chapters 1

and 2 and [13] chapter V.

Let A be a commutative ring with unit 1 and let M be an A-module.

Definition 2.1. An A-bilinear map M×M Ð→ A is called a bilinear form on M ; we often

denote the image of (m,n) by m ⋅ n. A pair (M, ⋅), where M is a left A-module and ⋅ a

bilinear form on M is called a bilinear form module. A morphism of bilinear form modules

(M, ⋅M) and (N, ⋅N) is an A-module map φ ∶M Ð→ N such that φ(m) ⋅N φ(m′) =m ⋅Mm′

for all m,m′ ∈M .

Definition 2.2. A bilinear form ⋅ on an A-module M is called symmetric if m ⋅n = n ⋅m

for all m,n ∈M and alternating if m ⋅ n = −n ⋅m for all m,n ∈M .

We shall be particularly interested in the following case.

Definition 2.3. A bilinear form module L = (V, ⋅) where V is a free abelian group of

finite rank and ⋅ is a symmetric bilinear form on V is called a lattice. A morphism of

lattices L and L′ is a morphism of L and L′ as bilinear form modules.

6



We at times abuse notation by not distinguishing between L = (V, ⋅) and V . Thus the

rank of L is by definition the rank of V and basis of L is by definition a basis of V (other

similar conventions are left implicit).

Our main example of a lattice will be the intersection or cup product lattice (Hn(X),∪),

where X is a smooth projective even-dimensional variety.

Roughly speaking, it is often possible to check certain properties of the lattice by

checking associated properties of the following matrix.

Definition 2.4. Let L = (V, ⋅) be a lattice of rank r and let {v1, . . . , vr} be a choice of

basis of L. Then the matrix (vi ⋅ vj)ri,j=1 is called the Gram matrix of L.

We shall frequently make the conceptual abuse of identifying a lattice with its Gram

matrix. In these cases, we shall be careful to be explicit about the choice of basis.

We check how the Gram matrix of L changes under change of basis. Let GL(r,Z) be

the group of invertible r×r matrices over Z. For any two choices of basis B = {e1, . . . , er}

and B′ = {f1, . . . , fr} of V , there exists a matrix M ∈ GL(r,Z) such that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

f1

f2

⋮

fr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

e1

e2

⋮

er

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Let G and G′ be Gram matrices of L with choice of basis B and B′, respectively. Then

a simple calculation shows that

G′ =MGM t, (2.1)

where M t is the transpose of M . In particular, det(G) is independent of the choice of

basis for V , motivating the definition of our first invariant

Definition 2.5. The integer d(L) ∶= det(G), where G is the Gram matrix of L with

respect to a choice of basis, is called the discriminant of L. The lattice L is called

nondegenerate if d(L) ≠ 0 and unimodular if d(L) = ±1.

7



We have the useful

Lemma 2.1. Let L = (V, ⋅) be a nondegenerate lattice and M = (W, ⋅∣W ) is a sublattice

of L of full rank. Then we have

d(L)(L ∶M)2 = d(M),

where (L ∶M) denotes the index (the number of left-cosets) of W in V .

Corollary 2.1. Let L = (V, ⋅) be a nondegenerate lattice and M = (W, ⋅∣W ) be a unimod-

ular full rank sublattice of L. Then L is unimodular and M = L.

The proof of the corollary is short enough that we record it here

Proof. By lemma 2.1, we have (L ∶M)2 = ±d(L)−1. Since the left side is a positive integer

and ∣d(L)∣ ≥ 1, we have ∣d(L)∣ = 1. Then (L ∶M) = 1, so L =M .

We continue with description of the basic lattice invariants. To each lattice L, we can

associate the quadratic form QL ∶ v ↦ v ⋅ v. With a choice of basis B = {e1, . . . , er} of L,

QL looks as follows: let G = (gij)ri,j=1 be the Gram matrix of L (with respect to B) and

let v = ∑i viei for integers vi. Then

QL(v) = v ⋅ v =
r

∑
i,j=1

gijvivj =
r

∑
i=1

giiv
2
i + 2∑

i<j

gijvivj. (2.2)

The rest of the invariants of L are defined in terms of the quadratic form QL.

Definition 2.6. A quadratic form Q is called definite if Q(v) has the same sign for all

v ∈ V . If the form Q is definite, it is called positive-definite if Q(v) > 0 for all v ∈ V and

negative-definite if Q(v) < 0 for all v ∈ V . Otherwise Q is called indefinite. A lattice L is

called positive-definite, negative-definite or indefinite if the quadratic form associated to

L is.

Definition 2.7. A lattice L = (V, ⋅) is called even (Type II ) if the associated quadratic

form takes on even values for all v ∈ V , otherwise L is called odd (Type I ).

8



Let VR ∶= V ⊗ R be the R-vector space obtained by extending scalars. Extend the

bilinear form ⋅ to a bilinear form ⋅R on VR and let L ⊗R ∶= (V ⊗R, ⋅R). It is well-known

from linear algebra that any quadratic form over R may be brought to the form

Q ∶ (v1, . . . , vn) ∈ V ↦ ε1v
2
1 +⋯ + εnv2

n, (2.3)

where εi = ±1 or εi = 0 for each 1 ≤ i ≤ n. Moreover, the number of indices for which εi

= 1, -1 and 0 is independent of the choice of basis of V for which Q is in diagonal form

(2.3) (so that these numbers depend only on Q). We then have the definitions

Definition 2.8. The signature σ(Q) of a quadratic form Q is defined to be the tuple of

positive integers (b+, b−), where b+ is the number of indices for which εi = 1 and b− the

number of indices for which εi = −1 in a diagonal representation (2.3) of Q. The index of

the quadratic form Q of signature (b+, b−) is defined to be the integer τ(L) ∶= b+−b−. The

signature and index of a lattice L are defined to be the signature and index, respectively,

of the quadratic form associated to L⊗R.

We finish this section with an example. The following lattice came up in the classifi-

cation of even indefinite unimodular forms.

Example. Fix the standard basis {(1,0), (0,1)} of Z2 and define a lattice U on Z2 by

the Gram matrix
⎛
⎜⎜
⎝

0 1

1 0

⎞
⎟⎟
⎠
.

The lattice U called the hyperbolic plane. We see that U is a rank two symmetric uni-

modular even lattice. The associated quadratic form is

(a1, a2)↦ 2a1a2 = (a1 + a2√
2

)
2

− (a1 − a2√
2

)
2

,

so we have σ(U) = (1+,1−) and τ(U) = 0. In particular, U is indefinite.

9



2.1.1 The lattices Γ4k

We now describe the family of lattices Γ4k for k ≥ 1 following [13] section V.1.4.3. As

indicated in the introduction, this family will play an important role in chapter 5.

Let r = 4k be a positive integer. Equip the rational vector space Qr with a rational-

valued bilinear form having its Gram matrix equal to the r×r identity matrix with respect

to the standard basis of Qr. Identify Zr with the free abelian subgroup of Qr consisting

of points of Qr with integer coordinates (with respect to the standard basis).

Consider the homomorphism of abelian groups Zr Ð→ Z/2Z mapping (v1, . . . , vr) ∈ Zr

to ∑ vi mod 2 and let K be its kernel. We have (Zr ∶ K) = 2; this fact will be needed

below. Let E be the free abelian subgroup of Qr generated by K and the vector e ∶=

(1
2 , . . . ,

1
2). The following is a more explicit description of the points in E: v ∈ E if and

only if

i). 2vi ∈ Z for all 1 ≤ i ≤ r, ii). vi − vj ∈ Z for all 1 ≤ i, j ≤ r, iii).
r

∑
i=1

vi ∈ 2Z. (2.4)

The above conditions can be seen, for example, by writing out v as ae + `, with a ∈ Z

and ` ∈ K. The abelian group E with restriction of the bilinear form on Qr to E is our

candidate for a lattice.

To check that (E, ⋅∣E) is a lattice, we must check that ⋅∣E is integer-valued. If v,w

are arbitrary elements of E, we may be write v = ae +m, w = be + ` for some a, b ∈ Z and

m,` ∈K, so that by bilinearity

v ⋅w = ab(e ⋅ e) + e ⋅ (am + b`) +m ⋅ `. (2.5)

We have e ⋅ e = r/4 = k is an integer, so ab(e ⋅ e) is an integer. Next, since (am + b`) ∈ E,

e ⋅ (am + b`) is an integer by condition iii) of (2.4). Finally, it is clear that m ⋅ ` is an

integer. It follows that v ⋅w is an integer. Therefore, (E, ⋅∣E) is a lattice. It is this step

of the construction that makes it necessary to have the dimension r of Qr divisible by 4.

10



We denote the lattice (E, ⋅∣E) by Γ4k. Other common notations for Γ8 are E8 and D+
8 .

The lattices Γ4k have the following invariants:

Lemma 2.2. Let k ≥ 1. We have r(Γ4k) = 4k, σ(Γ4k) = (4k+,0−), τ(Γ4k) = 4k and

d(Γ4k) = 1. In particular, Γ4k is unimodular and positive-definite. Moreover, Γ4k is even

exactly when k is even and odd exactly when k is odd.

Proof. r(Γ4k) = 4k: By construction 4k = r(Zr) ≤ r(Γ4k) ≤ dimQ(Qr) = 4k.

d(Γ4k) = 1: We see that 2e ∈ K, but e ∉ K, so (Γ4k ∶ K) = 2. Applying lemma 2.1 to the

lattice inclusions K ⊂ Zr and K ⊂ Γ4k, we have

d(Zr)(Zr ∶K)2 = d(K) and d(Γ4k)(Γ4k ∶K)2 = d(K).

Since d(Zr) = 1 and (Zr ∶K) = 2, it follows that d(Γ4k) = 1.

Since the bilinear form on Γ4k is the restriction of a positive-definite bilinear form on

Qr to a subset of Qr, it is clear that the bilinear form on Γ4k remains positive-definite.

It follows that

σ(Γ4k): is equal to (4k+,0−) and so

τ(Γ4k): is equal to 4k.

Finally, we determine whether Γ4k is even or odd. By (2.5), for any v = ae +m ∈ E, we

have

v ⋅ v = a2k + 2a(e ⋅m) +m ⋅m. (2.6)

Now by definition of K, if m = (m1, . . . ,mr) ∈K, then ∑mi ≡ 0 mod 2, hence (∑mi)2 ≡ 0

mod 2. But (∑mi)2 = ∑m2
i +2∑i<jmimj, so m⋅m = ∑m2

i ≡ (∑mi)2 = 0 mod 2. It follows

that v ⋅ v ≡ a2k mod 2. Therefore Γ4k is even exactly when k is even and odd exactly

when k is odd.

Finally, the following set of generators for Γ4k will be useful in chapter 5:

11



Lemma 2.3. Let r = 4k be a positive integer. Then the lattice elements γi ∶= ei − ei+1

with i = 1, . . . , (r − 1), γr ∶= 2er and γr+1 ∶= 1
2 (e1 + e2 +⋯ + er) generate Γr.

Proof. Let v = (v1, . . . , vr) ∈ Γr ⊂ Qr be arbitrary. We use the conditions (2.4) character-

izing the vectors v contained in Γr. By conditions i) and ii), we may assume that vi are

either integers for all 1 ≤ i ≤ r or (odd) integral multiples of 1
2 for all 1 ≤ i ≤ r. We may

reduce the second case to the first by subtracting 1
2(e1 + ⋅ ⋅ ⋅ + er) from the vector v.

Now let δ1 ∶= v1 ∈ Z (possibly equal to 0) and bring the coordinate v1 of v to 0 by

subtracting δ1 (e1 − e2) from v. Proceed inductively for j = 2, . . . , r − 1, at step j bringing

the j-th coordinate of v −∑j−1
i=1 δi (ei − ei+1) to 0 by subtracting an appropriate multiple

δj ∈ Z of the vector (ej−ej+1) from the vector v−∑j−1
i=1 δi (ei − ei+1). Then every coordinate

of the vector v −∑r−1
i=1 δi (ei − ei+1) is equal to 0, except possibly the r-th coordinate. But

by condition iii) of (2.4), any such vector must be an integral multiple of 2er, say δr 2er.

Then we have

v =
r−1

∑
i=1

δi (ei − ei+1) + δr 2er =
r

∑
i=1

δiγi

up to adding the vector 1
2(e1 + ⋅ ⋅ ⋅ + er) = γr+1 to the right side, which shows the claim.

2.2 The Hodge and Lefschetz decompositions of Hk(X,C)

The singular cohomology groups Hk(X,Z) are homeomorphic invariants of X and in

particular do not depend on the complex structure of X. On the other hand, the Hodge

decomposition splits Hk(X,C) =Hk(X,Z)⊗C into a direct sum of complex vector spaces,

each of which depend on the complex structure. We may hope to obtain refined infor-

mation about the intersection form on X (making use of the fact that X has a naturally

defined complex structure) by extending it to C and studying its restriction to the pieces

of the Hodge decomposition. In this section, we describe the Hodge decomposition of

Hk(X,C). It will turn out to be useful to also know the Lefschetz decomposition and we
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describe this as well.

Let X be a smooth projective variety of dimension n, considered as a compact Kähler

manifold. Then X may be viewed as a C∞ manifold of real dimension 2n. Over each point

x ∈X, the fibre of the real tangent bundle Tx,X,R to X over x is spanned as a real vector

space by the derivations {∂/∂xj, ∂/∂yj}. Multiplication by i induces an endomorphism

J of Tx,X,R given by J(∂/∂xj) = ∂/∂yj and J(∂/∂yj) = −∂/∂xj (we have J2 = −id)—a

so-called almost complex structure on Tx,X,R. Extending the scalars to C, it is more

convenient to change coordinates and work instead with the complex basis

∂

∂zj
∶= 1

2
( ∂

∂xj
− i ∂
∂yj

) , ∂

∂zj
∶= 1

2
( ∂

∂xj
+ i ∂
∂yj

)

of Tx,X,C ∶= Tx,X,R ⊗ C. The endomorphism J extends to an endomorphism of Tx,X,C; it

is clear that the only possible eigenvalues of J are ±i. Let T 1,0
x,X denote the eigenspace

corresponding to the eigenvalue i and T 0,1
x,X the one corresponding to the eigenvalue −i.

We have

Tx,X,C = T 1,0
x,X⊕T 0,1

x,X .

One reason for the choice of basis above is that J(∂/∂zj) = i(∂/∂zj) and J(∂/∂zj) =

−i(∂/∂zj) so that {∂/∂zj} is a basis for T 1,0
x,X and {∂/∂zj} a basis for T 0,1

x,X . Dualizing, we

have a similar decomposition for the fibre of the complexified cotangent space Ωx,X,C ∶=

Ωx,X,R ⊗C over x:

Ωx,X,C = Ω1,0
x,X⊕Ω0,1

x,X .

The dual bases for Ω1,0
x,X and Ω0,1

x,X are {dzj ∶= dxj + i dyj} and {dzj ∶= dxj − i dyj}, respec-

tively. Thus we have Ω1,0
x,X = Ω0,1

x,X , where complex conjugation acts on the complex vector

space Ω1,0
x,X in the natural way.

The above constructions extend globally (see [14] pp. 43–55), giving decompositions

r

⋀ΩX,C = ⊕
p+q=r

Ωp,q
X , (2.7)
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for all r ≤ n, where Ωp,q
X ∶= ⋀p Ω1,0

X ⊗⋀q Ω0,1
X . Moreover, we have Ωp,q

X = Ωq,p
X .

Let Ap,q(X) denote the C∞ sections of the bundle Ωp,q
X . In local coordinates, the

elements of Ap,q(X) look like

∑
i1<i2<⋯<ip
j1<j2<⋯<jq

fi1,...,ip,j1,...,jq(z) dzi1 ∧⋯ ∧ dzip ∧ dzj1 ∧⋯ ∧ dzjq ,

where fi1,...,ip,j1,...,jq are C∞. Define

Hp,q(X) ∶= {α ∈Hp+q(X,C) ∶ α may be represented by a form ω ∈ Ap,q(X)}.

It is a theorem of Hodge that when X is compact Kähler the decomposition (2.7) on the

level of differential forms remains true at the level of cohomology.

Theorem 2.1 (Hodge). Let (X,ω) be a compact Kähler manifold of dimension n. Then

for 0 ≤ k ≤ 2n, Hk(X,C) admits the decomposition

Hk(X,C) = ⊕
p+q=k

Hp,q(X), (2.8)

such that Hp,q(X) =Hq,p(X).

Remark. The decomposition (2.8) is independent of the choice of Kähler metric on X.

This is proposition 6.11, pp. 142–143 of [14].
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Write hp,q(X) ∶= dimCHp,q(X). The integers hp,q(X) are often displayed in a diamond

h0,0(X)

h1,0(X) h0,1(X)

. .
.

⋮ ⋱

hn,0(X) ⋯ ⋯ h0,n(X)

⋱ ⋮ . .
.

hn,n−1(X) hn−1,n(X)

hn,n(X)

As Hp,q(X) = Hq,p(X), we have hp,q(X) = hq,p(X), so that the Hodge diamond of X is

symmetric about the middle vertical. By Serre duality we have hp,q(X) = hn−p,n−q(X), so

that the Hodge diamond of X is symmetric about the middle row.

Example. Let X be a smooth genus g curve. Then X is connected and has topological

Euler characteristic 2−2g. Using symmetry under complex conjugation, we have h1,0(X) =

h0,1(X), so h1(X) = h1,0(X)+h0,1(X) = 2h1,0(X). Then 2−2g = h0(X)−h1(X)+h2(X) =

2 − 2h1,0(X), so X has the Hodge diamond

1

g g

1

.

Example. Let X be a K3 surface. Then X has the Hodge diamond

1

0 0

1 20 1

0 0

1

.
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(see [1], Ch. VIII)

A rough idea of the proof of theorem 2.1 is as follows. First, for a compact C∞

manifold X with Riemannian metric g, there is a bijection between cohomology classes

in Hk(X,R) and real-valued differential k-forms η ∈ Ak(X,R) satisfying ∆d,g η = 0, where

∆d,g is the Laplacian operator on Ak(X,R) associated to the metric g and the usual

operator d ∶ Ak(X,R)Ð→ Ak+1(X,R) (the so-called (d, g)-harmonic forms). By extension

of scalars, it is immediate that there is a bijection between Hk(X,C) and complex-

valued (d, g)-harmonic forms. For a general compact complex manifold with hermitian

metric h, the components ηp,q of a (d, h)-harmonic form η may not themselves be (d, h)-

harmonic. However, for compact Kähler manifolds (X,ω) with Kähler metric h = g − iω,

the Laplacians associated to the operators d, ∂ and ∂ agree up to a constant and this fact

is used to show that if η ∈ Ak(X) satisfies ∆d,h η = 0, then the components ηp,q of η again

satisfy ∆d,h ηp,q = 0. Then the decomposition (2.8) on the level of cohomology follows

from the analogous decomposition for harmonic forms. A detailed and complete proof of

theorem 2.1 may be found in section 0.6 of [6].

With notation as above, we now turn to the Lefschetz decomposition of the complex

cohomology of (X,ω) . For each 0 ≤ k ≤ 2n − 2, define the operator

Lk ∶ Ak(X)Ð→ Ak+2(X)

α ↦ α ∧ ω.

It follows from the Leibniz rule d(α ∧ ω) = (dα) ∧ ω + (−1)kα ∧ (dω) = (dα) ∧ ω that Lk

sends closed forms in Ak(X) to closed forms in Ak+2(X) and exact forms to exact forms,

hence induces the operator

Lk ∶Hk(X,C)Ð→Hk+2(X,C).

We often omit the subscript k on Lk. We have
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Theorem 2.2 (Hard Lefschetz theorem). Let (X,ω) be a compact Kähler manifold of

dimension n. For all k < n, the map

Lk ∶Hn−k(X,C)Ð→Hn+k(X,C)

is an isomorphism.

Define the (n − k)th primitive cohomology group Hn−k
prim(X,C) of X is the kernel of

the map Lk+1 ∶ Hn−k(X,C) → Hn+k+2(X,C). Then for any k < n, we have the Lefschetz

decomposition

Hk(X,C) = ⊕
2r≤k

LrHk−2r
prim (X,C).

Proof. One proof is a beautiful application of the representation theory of the Lie algebra

sl2(C). It may be found in, say, [6] pp. 118–122.

Finally, letHp,q
prim(X,C) ∶=Hp+q

prim(X,C)∩Hp,q(X) and write hp,qprim(X) = dimCH
p,q
prim(X,C).

We have the useful

Lemma 2.4. We have

Hk
prim(X,C) = ⊕

p+q=k

Hp,q
prim(X,C)

and

hp,qprim(X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

hp,q − hp−1,q−1, p + q ≤ n

hp,q − hp+1,q+1, p + q ≥ n
.

2.3 Intersection theory and integral cohomology H●(X,Z)

The integral cohomology ring H●(X,Z) of a smooth projective variety X (viewing X

as a compact complex manifold) plays a role analogous to that of the Chow ring. By

Poincaré duality, the elements of H●(X,Z) can be interpreted as cycles modulo a certain

equivalence relation (namely homological equivalence) and, for any pair of torsion-free co-

homology classes α,β ∈Hk(X), the cup product is Poincaré dual to oriented intersection

of cycles (as long as k-cycles X and Y Poincaré dual to α and β intersect transversally—
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and this is always possible to arrange when X is C∞ by picking homologically equivalent

classes X ′ and Y ′ if necessary).

In this section, we give explicit descriptions of H●(Pn,Z), H●(Pa × Pb,Z) and of the

additive structure of H●(G(k,n),Z). Explicit knowledge of these rings will be useful

in Chapter 3 to determine which of the spaces Pn and G(k,n) have a positive-definite

intersection form. The description of the intersection form on H(k+1)(n−k)(G(n, k),Z) will

also be used in simple Schubert calculus arguments in Chapter 5. In the last part, we

write down the excess intersection formula, which will be used throughout chapter 5.

2.3.1 Integral cohomology of Pn and Pa × Pb

The cell decomposition

Pn ≅ (Pn ∖ Pn−1) ⊔⋯ ⊔ (P1 ∖ P0) ⊔ P0

with (Pk ∖ Pk−1) ≅ Ck shows that the integral cohomology ring H●(Pn,Z) of Pn is equal

to

H●(Pn,Z) = Z[H]
(Hn+1)

.

where H is the hyperplane class. The class H has real codimension 2, hence is of degree

2 in the grading and

Hk(Pn,Z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z, 0 ≤ k ≤ 2n, k even

0, otherwise
.

Let Y be a closed smooth subvariety of Pn of codimension r. Then by above the

Poincaré dual class [Y ] is equal to d ⋅Hr for some d ∈ Z. The following lemma gives an

interpretation of d in terms of the geometry of Y

Lemma 2.5. The integer d above is equal to the degree of Y .

Proof. We interpret the intersection of Y with a generic Pn−r in two different ways. On one
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hand, this is e ∶= deg(Y ) distinct points. Therefore [Y ∩ Pn−r] = [pt.]+⋯+ [pt.] = e [pt.],

where the middle sum has e summands. On the other hand, by taking generic hyperplane

sections,

[Y ∩ Pn−r] = [Y ] ⋅Hn−r = dHn = d [pt.] ,

where the last sum has d summands. So d = deg(Y ), as desired.

Now by Künneth’s theorem, we have

H●(Pa × Pb,Z) =H●(Pa,Z)⊗H●(Pb,Z) = Z[H1,H2]
(Ha+1

1 ,Hb+1
2 )

.

Thus

Hk(Pa × Pb,Z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ZHk
1 ⊕ZHk−1

1 H2 ⊕⋯⊕ZH1Hk−1
2 ⊕ZHk

2 , 0 ≤ k ≤ 2(a + b), k even

0, k odd

One identifies the class Hi (i = 1,2) as the class of a pullback of a hyperplane under the

projection πi to the i-th factor of Pa × Pb.

2.3.2 Additive structure of H●(G(k,n),Z)

Here we describe the additive structure of the graded piecesH i(G(k,n),Z). One reference

for this subsection is [6] pp. 193–206.

As an abelian group, each even-codimensional piece of the integral cohomologyH2i(G(k,n),Z)

(0 ≤ i ≤ dimCG(k,n)) of the Grassmannian of k-planes in Pn is freely generated by cycles

σa0,...,ak where 0 ≤ a0 ≤ ⋅ ⋅ ⋅ ≤ ak ≤ (n − k) are integers such that ∑aj = i. The indexing

sequences a0, . . . , ak may be thought of as Young diagrams fitting inside a (k+1)×(n−k)

rectangle. We now describe the cycles σa0,...,ar .

For a moment, we work with the Grassmannian G(k + 1, n+ 1) of (k + 1)-dimensional

subspaces of Cn+1. Let B = {e1, . . . , en+1} be a basis of Cn+1. A (k + 1)-dimensional

subspace of Cn+1 is determined by a choice of k + 1 linearly independent vectors in Cn+1.
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Such choices are in bijection with full-rank (k + 1) × (n + 1) matrices

⎛
⎜⎜⎜⎜⎜⎜
⎝

v1,1 ⋯ v1,n+1

⋮ ⋱ ⋮

vr+1,1 ⋯ vr+1,n+1

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Let GL(n,C) be the group of invertible n×n matrices over C. Two choices of k+1 linearly

independent vectors corresponding to matrices M and M ′ as above determine the same

subspace of Cn+1 if and only if there exists g ∈ GL(k + 1,C) such that g ⋅M =M ′, with g

acting on M by matrix multiplication. That is, M and M ′ determine the same subspace

if and only if M and M ′ are in the same orbit of the natural action of GL(k+1,C) on the

set of full-rank k+1×n+1 matrices. Linear algebra gives a unique representative of each

orbit under the above action: matrices in reduced row-echelon form. This gives a well-

defined map from k + 1-dimensional linear subspaces of Cn+1 to full-rank (k + 1)× (n+ 1)

matrices. The generic such matrix will look like

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 ⋯ 0 ∗ ⋯ ∗

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 ⋯ 1 ∗ ⋯ ∗

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

where ∗ denote arbitrary complex numbers. Let ar be the number of cells that the pivot

on the (r − 1)-st row moves from its generic position. Then clearly 0 ≤ a0 ≤ ⋅ ⋅ ⋅ ≤ ak ≤

(n + 1) − (k + 1) = n − k. We define

SBa0,...,ak ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Λ ∈ G(k,n) ∶
RREF of the matrix representing the k + 1 dimensional subspace

associated to Λ has sequence type a0, . . . , ak

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(we have switched back to working with G(k,n)) and take

σa0,...,ak ∶= [ SBa0,...,ak ]
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to be the cycle class in H2∑ai(G(k,n),Z) of the Zariski-closure of SBa0,...,ar in G(k,n).

It is implicit in our notation that the cycle class σa0,...,ak is independent of the initial

choice of basis B. This will be clear from a more geometric description given below of

the subvarieties Sa0,...,ak as k-planes in Pn intersecting a fixed complete flag in dimensions

specified by the sequence a0, . . . , ak.

We remark that with the above description, it is clear that each Sa0,...,ak is affine; in

fact, Sa0,...,ak ≅ A(k+1)(n−k)−∑ai . Moreover, because the action of GL(k +1,Cn+1) induces a

decomposition of the set of full-rank (k+1)×(n+1) matrices into a disjoint union of orbits,

we have described a decomposition of the Grassmannian G(k,n) into a disjoint union of

(locally closed) affine subvarieties Sa0,...,ak . Hence Sa0,...,ak give a cellular decomposition

of G(k,n). Because each Sa0,...,ak has even real dimension, each boundary map in the

CW complex is the zero map. It follows that the cycles σa0,...,ak indeed generate the

cohomology in their respective codimension.

The choice of basis {e1, . . . , en+1} made above leads to a more geometric description

of the cycles σa0,...,ak . We have a natural complete flag

⟨en+1⟩ ⊂ ⟨en, en+1⟩ ⊂ ⋯ ⊂ ⟨e1, . . . , en+1⟩

or, projectivizing, a complete projective flag

P0 ⊂ P1 ⊂ ⋯ ⊂ Pn

where Pm ≅ P(⟨en+1−m, . . . , en+1⟩). We give a few examples of how the subvarieties SBa0,...,ak

of G(k,n) may be defined by conditions on the dimensions of the intersection of a k-plane

Λ ∈ SBa0,...,ak with the above flags.

Example. We work with the Grassmannian G(1,3) = G(2,4) of lines in P3. Fix a basis

B = {e1, . . . , e4} of C4. We expect a generic 2-dimensional subspace of C4 to intersect the

elements ⟨e4⟩, ⟨e3, e4⟩, ⟨e2, e3, e4⟩, ⟨e1, e2, e3, e4⟩ of the flag associated to B in 0, 0, 1 and
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2 dimensional subspaces, respectively. We study the two-dimensional subspaces contained

in the strata SBa0,a1 for various sequences a0, a1:

(0,0): The RREF is

⎛
⎜⎜
⎝

1 0 ∗ ∗

0 1 ∗ ∗

⎞
⎟⎟
⎠
.

Since vectors in ⟨e3, e4⟩ are of the form (0,0,∗,∗), we have ⟨e3, e4⟩∩Λ = ∅, for any

Λ ∈ SB0,0. Moreover, ⟨e2, e3, e4⟩ ∩ Λ = ⟨(0,1,∗,∗)⟩ and ⟨e3, e4⟩ ∩ Λ = Λ. As expected,

the sequence 0,0 corresponds to generic 2-planes.

(0,1): The RREF is

⎛
⎜⎜
⎝

1 ∗ 0 ∗

0 0 1 ∗

⎞
⎟⎟
⎠
.

The dimensions of intersections of a 2-dimensional subspace Λ ∈ SB0,1 with the flag

elements are

⟨e4⟩ ⟨e3, e4⟩ ⟨e2, e3, e4⟩ ⟨e1, e2, e3, e4⟩

∅ ⟨(0,0,1,∗)⟩ ⟨(0,0,1,∗)⟩ Λ

dim 0 dim 1 dim 1 dim 2

In the projective picture, every line Λ ∈ SB0,1 is constrained to intersect the line

` = P(⟨e3, e4⟩) in a point.

(0,2): The RREF is

⎛
⎜⎜
⎝

1 ∗ ∗ 0

0 0 0 1

⎞
⎟⎟
⎠
.

The dimensions of intersections of a 2-dimensional subspace Λ ∈ SB0,2 with the flag
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elements are

⟨e4⟩ ⟨e3, e4⟩ ⟨e2, e3, e4⟩ ⟨e1, e2, e3, e4⟩

⟨(0,0,0,1)⟩ ⟨(0,0,0,1)⟩ ⟨(0,0,0,1)⟩ Λ

dim 1 dim 1 dim 1 dim 2

Projectively, every line Λ ∈ SB0,2 is constrained to contain the point P(⟨e4⟩).

(1,1): The RREF is

⎛
⎜⎜
⎝

0 1 0 ∗

0 0 1 ∗

⎞
⎟⎟
⎠
.

The dimensions of intersections of a 2-dimensional subspace Λ ∈ SB1,1 with the flag

elements are

⟨e4⟩ ⟨e3, e4⟩ ⟨e2, e3, e4⟩ ⟨e1, e2, e3, e4⟩

∅ ⟨(0,0,1,∗)⟩ Λ Λ

dim 1 dim 1 dim 2 dim 2

Projectively, every line Λ ∈ SB1,1 is constrained to lie in the 2-plane P(⟨e2, e3, e4⟩)

The cases (1,2) and (2,2) are similar.

In general, with respect to a choice of complete projective flag F = P0 ⊂ ⋅ ⋅ ⋅ ⊂ Pn, define

SFa0,...,ak ∶= {Λ ∣dim(Λ ∩ Pn−k+m−am) =m, m = 0,1, . . . , k} .

Then

SFa0,...,ak = {Λ ∣dim(Λ ∩ Pn−k+m−am) ≥m, m = 0,1, . . . , k} .

As suggested by the examples above, if B = {e1, . . . , en+1} is a choice of basis for Cn+1

and F is the flag P(⟨en+1⟩) ⊂ ⋯ ⊂ P(⟨e1, . . . , en+1⟩) determined by this basis as above, then

SBa0,...,ak = SFa0,...,ak . A proof may be found in [6], pp. 193–197.

Let PGL(n+1,C) be the group of invertible (n+1)×(n+1) matrices over C, quotiented

by the subgroup of scalar transformations (diagonal matrices with equal nonzero entries).
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It is well-known that PGL(n + 1,C) = Aut(Pn), the group of automorphisms of Pn, with

matrices in PGL(n + 1,C) acting by multiplication on the left on the column vectors of

homogeneous coordinates of Pn. The following lemma is useful for showing that certain

cohomology classes are equal:

Lemma 2.6. PGL(n + 1,C) is path-connected.

Proof. Let M and M ′ be two matrices in PGL(n + 1,C). Take the pencil of matrices

λM + µM ′, [λ ∶ µ] ∈ P1.

Now let F (λ,µ) ∶= det(λM + µM ′). Then F is a degree n + 1 homogeneous form in

λ and µ, hence we can consider its vanishing set in P1. As F (1,0) ≠ 0, F does not

vanish identically, so that the vanishing set V (F ) consists of (n + 1) points (counted

with multiplicity), say p1, . . . , pn+1, with none of the pi equal to [1 ∶ 0] or [0 ∶ 1]. But

Y ∶= P1 ∖ {p1, . . . , pn+1} is path-connected and a path from [1 ∶ 0] to [0 ∶ 1] in Y induces

a path from M to M ′ in PGL(n + 1,C).

Now given any two complete projective flags in Pn, there exists a g ∈ PGL(n + 1,C)

taking one to the other (this may be seen from the well-known fact that given any two

sets of n+2 points in linearly independent position in Pn, there exists a g ∈ PGL(n+1,C)

taking the first set to the second—the statement for n + 1 points suffices for the case

of the flag). Moreover, as PGL(n + 1,C) is path-connected, there exists a continuous

map [0,1] → PGL(n + 1,C), say t ↦ g(t), where g(0) = id and g(1) = g. The action

of g(t) on the first flag induces a continuous deformation of the first flag to the second.

Since integral cohomology is a discrete invariant, it follows that the cycle class σa0,...,ak is

independent of choice of flag. It follows in particular that σa0,...,ak is independent of the

choice of basis B made to define SBa0,...,ak .

The above completes our description of the even-codimensional cohomology groups.

Because the Grassmannian G(k,n) is the disjoint union of the Sa0,...,ak , each of which has
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even real dimension, in particular H2i+1(G(k,n),Z) = 0 for each 0 ≤ i < dimCG(k,n). The

description of the multiplication on H●(G(k,n),Z) in terms of the generators σa0,...,ak is

intricate, but well-understood. This is the so-called Schubert calculus—a description may

be found in [6], pp. 197–206. For our purposes, it is enough to describe the multiplication

rule for cycles in complementary codimension:

Lemma 2.7. Let σa0,...,ak and σb0,...,bk be cycles with ∑ai + ∑ bi = dimCG(k,n) = (k +

1)(n − k). Then

σa0,...,ak ⋅ σb0,...,bk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if a0 = n − k − bk, . . . , ak = n − k − b0

0, otherwise
(2.9)

Proof. See [6] pp. 197–198.

In the language of Young diagrams, two generating cycles σa0,...,ak and σb0,...,bk of

complementary dimension have product 1 in H●(G(k,n),Z) if the Young diagrams as-

sociated to the sequences a0, . . . , ak and b0, . . . , bk are complementary (with respect to a

(k + 1) × (n − k) rectangle) and product 0 otherwise.

Example. Consider the Grassmannian G(1,3) of lines in P3. There are a total of six

sequences a0, a1 with 0 ≤ a0 ≤ a1 ≤ 2:

Codimension in G(1,3) a0, a1

0 0,0

1 0,1

2 0,2

2 1,1

3 1,2

4 2,2

.

The cycles of complementary dimension are σ0,0 and σ2,2; σ0,1 and σ1,2; σ0,2 and itself;

σ1,1 and itself; and σ0,2 and σ1,1.
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Let p ⊂ ` ⊂ h ⊂ s be a fixed complete projective flag, with p ≅ P0 a point, ` ≅ P1 a line,

h ≅ P2 a hyperplane and s ≅ P3.

� The cycle σ0,0 corresponds to lines in P3 intersecting the flag generically. In partic-

ular, each such line will not intersect `. But the cycle σ2,2 corresponds to point of

G(1,3) corresponding to `. Hence σ0,0 ⋅ σ2,2 = 0.

� Since the cycle classes σa0,a1 are independent of the choice of flag, we can consider

σ1,2 with respect to any complete projective flag p′ ⊂ `′ ⊂ h′ ⊂ s′. Choose h′ inter-

secting the line ` of the original flag in a point (a generic choice of hyperplane will

do) and choose p′ to be a point on h′ different from the point of intersection of `

and h′. Now the cycle σ0,1 corresponds to lines in P3 intersecting ` in a point. The

cycle σ1,2 corresponds to lines through p′ contained in h′. There is a unique line

satisfying both conditions (the line through p′ and the point of intersection of ` with

h′). Hence σ0,1 ⋅ σ1,2 = 1.

� The cycle σ0,2 corresponds to lines in P3 containing p. Making a different choice p

and p′ of the points in the two flags determining σ0,2 shows that σ2
0,2 consists of the

unique line containing p and p′. Hence σ2
0,2 = 1.

� The cycle σ1,1 corresponds to lines in P3 contained in h. Making different choices h

and h′ of the hyperplanes in the two flags determining σ1,1 shows that σ2
1,1 consists

of the unique line contained in the intersection of h and h′. Hence σ2
1,1 = 1.

� Picking p in the flag determining σ0,2 to be a point off the hyperplane h′ in the flag

determining σ1,1 shows that σ0,2 ⋅ σ1,1 = 0.

2.3.3 Excess intersection formula

For a complex rank r vector bundle E on a variety X, let ct(E) = ∑r
k=0 ck(E)tk denote

the Chern polynomial of E and c(E) ∶= ct(E)∣t=1 = ∑r
k=0 ck(E) denote the total Chern
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class. The following theorem will be useful in chapter 5 for computing cup products of

configurations of projective varieties not intersecting in the expected dimension:

Theorem 2.3 (Excess Intersection Formula). Let X ⊂ Pm be a smooth variety of dimen-

sion n = k`. Let Y1, . . . , Y` be smooth closed subvarieties of X, each of dimension k, and

suppose that Z = Y1 ∩⋯ ∩ Y` is again smooth. Then

[Y1] ⋅ [Y2] ⋅ ⋯ ⋅ [Y`] = ∫
Z

c(N
Y1/X

∣
Z
) ⋯ c(N

Y`/X
∣
Z
)

c(N
Z/X

)
.

Proof. See prop. 9.1.1, pg. 154 of [5].

Applying theorem 2.3 with n =m, X = Pn and Y1 = Y2 = ⋯ = Y` immediately gives

Corollary 2.2. Let Y ⊂ Pn be a smooth variety of dimension k = n/`. Then

[Y ]` = ∫
Y
c(NY /Pn)`−1.

Before giving examples, we write down the following lemma that in particular will be

useful in computing normal bundles to smooth complete intersections:

Lemma 2.8. Let X be a variety and let E be a complex rank r vector bundle on X. If

s ∈ H0(X,E) is a global section of E such that Y = Zeros(s) ∶= {x ∈ X ∶ sx = 0 ∈ Ex} has

codimension r in X, then

NY /X = E∣Y .

Proof. Let IY be the ideal sheaf of Y . We identify the normal bundle N
Y /X

with the

dual sheaf to the quotient sheaf IY /I2
Y .

Let {Uα}α∈I be a local trivialization of E →X and let Mαβ be the associated transition

matrices. Write sα = s∣Uα = (fα1 , . . . , fαr ) for any α ∈ I. By definition of the transition
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matrices, we have

⎛
⎜⎜⎜⎜⎜⎜
⎝

fβ1

⋮

fβr

⎞
⎟⎟⎟⎟⎟⎟
⎠

=Mαβ

⎛
⎜⎜⎜⎜⎜⎜
⎝

fα1

⋮

fαr

⎞
⎟⎟⎟⎟⎟⎟
⎠

for all α,β ∈ I.

By hypothesis, the restriction IY ∣Uα is generated by fα1 , . . . , f
α
r as an OX ∣Uα-module.

We have that IY /I2
Y is a free OY -module of rank r and fα1 , . . . , f

α
r are a OY -basis for

IY /I2
Y over Uα.

For any α,β ∈ I, let tα = gα1 fα1 +⋯+ gαr fαr , gαi ∈ OY (Uα) and tβ = gβ1 f
β
1 +⋯+ gβr fβr , gβi ∈

OY (Uβ) be sections of IY /I2
Y over Uα and Uβ, respectively. We may write

tα = (gα1⋯gαr )

⎛
⎜⎜⎜⎜⎜⎜
⎝

fα1

⋮

fαr

⎞
⎟⎟⎟⎟⎟⎟
⎠

and tβ = (gβ1⋯g
β
r )

⎛
⎜⎜⎜⎜⎜⎜
⎝

fβ1

⋮

fβr

⎞
⎟⎟⎟⎟⎟⎟
⎠

= (gα1⋯gαr )Mαβ

⎛
⎜⎜⎜⎜⎜⎜
⎝

fα1

⋮

fαr

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

so that (gα1⋯gαr ) = (gβ1⋯g
β
r )Mαβ or, taking transpose,

⎛
⎜⎜⎜⎜⎜⎜
⎝

gα1

⋮

gαr

⎞
⎟⎟⎟⎟⎟⎟
⎠

=M t
αβ

⎛
⎜⎜⎜⎜⎜⎜
⎝

gβ1

⋮

gβr

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

This shows that, if Nαβ are the transition matrices for IY /I2
Y over Y for the local trivi-

alization {Uα ∩ Y }α∈I , we have Nαβ = M t
αβ ∣Y . Then IY /I2

Y ≅ E∗∣Y . The statement of the

lemma follows by taking duals.

Corollary 2.3. Let X =X(d) be a smooth complete intersection of type d = (d1, . . . , dr)

in PN . Then we have

NX/PN = (OPN (d1)⊕OPN (d2)⊕⋯⊕OPN (dr))∣X
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Proof. The global sections of the bundle OPN (d) are exactly the homogeneous degree

d forms on PN . Moreover, if E and F are vector bundles on X and s ∈ H0(X,E), t ∈

H0(X,F ) are global sections, then s ⊕ t ∈ H0(X,E) ⊕ H0(X,F ) ≅ H0(X,E ⊕ F ) and

Zeros(s ⊕ t) = Zeros(s) ∩ Zeros(t). Because X is a complete intersection by hypothesis,

we have X = ∩ri=1Zeros(Fi) = Zeros(F1 ⊕ ⋯ ⊕ Fr), for some Fi ∈ H0(X,OPN (di)). Now

apply lemma 2.8.

Examples. � Look at three 2-planes Λ1, Λ2, Λ3 in P3 intersecting in a line `. By

corollary 2.3, N
Λi/P3 = OP3(1)∣

Λi
and N

`/P3 = OP3(1)⊕OP3(1)∣
`
, so that c(N

Λi/P3) =

(1 + H ∣Λi) and c(N
`/P3) = (1 + H ∣`)2 = (1 + p)2, where p is the class of a point in

H●(`,Z) ≅H●(P1,Z). Then excess intersection formula gives

[Λ1] ⋅ [Λ2] ⋅ [Λ3] = ∫
`

c(N
Λ1/P3 ∣

`
) ⋅ c(N

Λ2/P3 ∣
`
) ⋅ c(N

Λ3/P3 ∣
`
)

c(N
`/P3)

= ∫
`

(1 + p)3

(1 + p)2
= ∫

`
1+p = 1.

� Look at three quadrics Q1, Q2, Q3 in P3 with Q1∩Q2∩Q3 = C, a twisted cubic curve.

(For example, we may take Q1 = Z0Z2 − Z2
1 , Q2 = Z0Z3 − Z1Z2, Q3 = Z1Z3 − Z2

2 ).

We have C ≅ P1 (being the image of the Veronese embedding of P1 in P3), so that

H●(C,Z) ≅H●(P1,Z). On the other hand, C is embedded as a curve of degree 3, so

in particular for any line bundle OP3(k) on P3, we have OP3(k)∣
C
= OP1(3k). By

corollary 2.3, N
Qi/P3 = OP3(2)∣

Qi
for i = 1,2,3, so that N

Qi/P3 ∣
C
= OP1(6) and

c(NQi/P3 ∣
C
) = (1 + 6p),

where p is the class of a point in H●(P1,Z).

We now determine c(N
C/P3). First, for any n ≥ 1 we have the Euler exact sequence

0Ð→ OPn Ð→
n+1

⊕
i=1

OPn(1)Ð→ TPn Ð→ 0.
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Then by multiplicativity of Chern polynomials in short exact sequences, we have

ct(
n+1

⊕
i=1

OPn(1)) = ct(OPn) ⋅ ct(TPn) = ct(TPn),

as ct(OPn) = 1, identifying OPn with the sheaf of sections of the trivial line bundle

over Pn. Then ct(⊕n+1
i=1 OPn(1)) = ct(OPn(1))n+1 = (1 + (n + 1)H t + O(t2)), where

H ∶= c1(OPn(1)). Comparing coefficients of t, we find c1(TPn) = (n + 1)H.

On C, we have the normal bundle exact sequence (using again that C ≅ P1)

0Ð→ TP1 Ð→ TP3 ∣
C
Ð→ NC/P3 Ð→ 0,

so that

c(NC/P3) =
c(TP3 ∣

C
)

c(TP1)
=

(1 + 4 H ∣C)
(1 + 2p)

= (1 + 12p)
(1 + 2p)

= 1 + 10p.

By excess intersection formula,

[Q1] ⋅ [Q2] ⋅ [Q3] = ∫
C

c(N
Q1/P3 ∣

C
) ⋅ c(N

Q2/P3 ∣
C
) ⋅ c(N

Q3/P3 ∣
C
)

c(N
C/P3)

= ∫
C

(1 + 6p)3

(1 + 10p)

= ∫
C
(1 + 3 ⋅ 6p − 10p)

= 8.

We conclude this subsection with the following calculation, which is useful for excess

intersection computations in the case the ambient variety X is a proper subvariety of Pn:

Lemma 2.9. Let Z be a smooth projective variety and W ⊂ Y closed smooth subvarieties

of Z. Then we have

ct(NW /Z) = ct(NW /Y ) ⋅ ct(NY /Z ∣W ) or ct(NW /Y ) =
ct(NW /Z

)

ct(NY /Z
∣
W
)
.
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Proof. We have the normal bundle exact sequence

0Ð→ TY Ð→ TZ ∣Y Ð→ NY /Z Ð→ 0

of vector bundles on Y and inclusions

TW Ð→ TY ∣W and TW Ð→ TZ ∣W

of vector bundles on W .

Restricting the Y ⊂ Z normal bundle exact sequence to W and combining with the

above inclusions, we obtain the commutative diagram

0 0 0

0 TW TW 0 0

0 TY ∣W TZ ∣W N
Y /Z

∣
W

0

0 N
W /Y

N
W /Z

N
Y /Z

∣
W

0

0 0 0

id

id

where the top two rows and all of the columns are exact. It then follows by the nine

lemma that the bottom row is exact. Because total Chern classes are multiplicative over

short exact sequences, this proves the lemma.
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Chapter 3

Examples of smooth varieties with

positive-definite intersection form

The descriptions of the integral cohomology ring H●(Pn,Z) and the additive structure of

the integral cohomology ring H●(G(k,n),Z) in section 2.3 allow us to completely deter-

mine which of the projective spaces Pn and Grassmannians G(k,n) have a positive-definite

intersection form on their middle cohomology. We also include a sketch of classification

of smooth projective surfaces with positive-definite cup-product form, which will come

into one step of the argument in chapter 4.

3.1 Projective spaces

Consider the intersection form on Hn(Pn). We have

H●(Pn,Z) = Z[H]
(Hn+1)

,

where H is the hyperplane class, hence of weight 2 in the grading. When n is odd,

Hn(X,Z) = 0, so the only interesting case is n even. In the latter case, Hn(X,Z) is a
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free rank one Z-module with generator Hn/2. Moreover, we have

Hn/2 ⋅Hn/2 = deg (H1 ∩H2 ∩⋯ ∩Hn) = 1,

where Hi, 1 ≤ i ≤ n, are general hyperplanes in Pn. This shows

Proposition 3.1. The projective space Pn has a positive-definite intersection form for

all n.

3.2 Grassmannians

Because we have identifications G(0, n) = Pn and G(n − 1, n) = Pn∗, we focus on the

Grassmannians G(k,n) with 0 < k < (n− 1). We have dimG(k,n) = (k + 1)(n− k). Once

again, the middle cohomology H(k+1)(n−k)(G(k,n),Z) is only nonzero when (k+1)(n−k)

is even.

Proposition 3.2. The following is a complete list of even-dimensional Grassmannians

G(k,n), 0 < k < (n − 1), with positive-definite intersection form:

i). G(1, n), n > 1 arbitrary and

ii). G(n − 2, n), n > 1 arbitrary

Proof. By lemma 2.7, each generating class σa0,...,ak ∈ H(k+1)(n−k)(G(k,n),Z) has exactly

one dual generating class, where σa0,...,ak is dual to σa′0,...,a′k if σa0,...,ak ⋅ σa′0,...,a′k = 1 and

σa0,...,ak ⋅ σa′′0 ,...,a′′k = 0 for any (a′′0 , . . . , a′′k) ≠ (a′0, . . . , a′k). The key to the proof are the

following two observations.

First, if all of the generating cycles of the midddle cohomology are self-dual, then the

intersection lattice on the middle cohomology is positive-definite (indeed, equal to the

identity matrix of size equal to the rank of H(k+1)(n−k)(G(k,n),Z)).

Second, if there exists a single generator σa0,...,ak ∈H(G(k,n),Z) that is not self-dual,

then the intersection form is not positive-definite on H(k+1)(n−k)(G(k,n),Z). Indeed,
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denoting this class by α and the dual class σn−k−ak,...,n−k−a0 by β, we have

(α − β) ⋅ (α − β) = 0 − 1 − 1 + 0 = −2.

We show that for all G(k,n) not of the types i) and ii), there exists a non-self-dual

cycle. There are many ways to see this. Since (k+1)(n−k) must be even, at least one of

(k + 1) and (n−k) is even, say (n−k). Then (n−k) ≥ 4, and the sequence (n−k2 , . . . , n−k2 )

satisfies a0 ≤ ⋯ ≤ ak+1 and ∑ai = (k + 1)(n− k)/2. The bottom row contains a0 ≥ 2 boxes.

Let (a′0, . . . , a′k) = (a0 − 2, a1,⋯, ak−1 + 1, ak + 1). Then n − k − a′k ≠ a′0. If (n − k) is not

even, repeat the previous construction in a (n − k) × (k + 1) box and take the conjugate

diagram fitting inside a (k + 1) × (n − k) box.

Finally, we check that indeed for cases i) and ii) all of the generating cycles of the

middle cohomology are self-dual.

i). Consider G(1, n) for any n > 1. The middle cohomology H2(n−1)(G(1, n),Z) is

generated by the cycles σa0,a1 with 0 ≤ a0 ≤ a1 ≤ n − 1 and a0 + a1 = n − 1. In

particular, for any (a0, a1) satisfying the above, the dual cycle corresponds to the

sequence ((n − 1) − a1, (n − 1) − a0) = (a0, a1) because a0 + a1 = n − 1. So every cycle

is self-dual.

ii). Now look at G(n−2, n) for any n > 1. The middle cohomology H(n−2)2(G(n−2, n),Z)

is generated by cycles σa0,...,an−2 with 0 ≤ a0 ≤ ⋯ ≤ an−2 ≤ 2 and a0 +⋯ + an−2 = n − 2.

Clearly (a0, . . . , an−2) = (1, . . . ,1) is a sequence satisfying the two criteria and the

corresponding cycle is self-dual. Now, for each ai equal to 2, there must be a

corresponding aj equal to 0 to keep the sum of ai equal to n−2. Moreover, to satisfy

monotonicity the strings of 0’s and 2’s must appear on the left and right ends of the

sequence, respectively. It is clear that all cycles corresponding to such sequences are

self-dual.
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3.3 Surfaces

The following result will be needed in one step of the classification of the smooth complete

intersections with positive-definite intersection form

Definition 3.1. A smooth projective surface S is called a fake P2 if S is of general type

(i.e. has Kodaira dimension equal to 2) and the Hodge diamond of S is equal to that of

P2:

1

0 0

0 1 0

0 0

1

.

Theorem 3.1. The only smooth projective surfaces with positive-definite intersection

form are P2 and the fake P2 surfaces.

We give a sketch of the proof, due to professor Michael Roth, which makes use of

several results from surface theory (including the classification of minimal surfaces).

Proof Sketch. For a surface S, we recall the notation pg ∶= h0(KS) = h2(OS), q ∶= h1(OS),

and let κ = κ(S) denote the Kodaira dimension. When S is smooth, its Hodge diamond

then looks like

1

q q

pg h1,1 pg

q q

1

.

By Hodge index theorem, the index of the intersection form on S is ((2pg+1)+, (h1,1−1)−).

So S has positive-definite intersection form only if h1,1(S) = 1. In turn, the latter holds

only if S is minimal, as NS(S) = H2(S,Z) ∩ H1,1(S) by Lefschetz (1,1). We check

through the classification of minimal surfaces for potential examples:
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κ = −∞: Here we require pg = 0, q = 0, so that the surface is P2.

κ = 0: K3: No examples, as h1,1 = 20.

Enriques: No examples, as h1,1 = 10.

Abelian surfaces: No examples, as h1,1 = 4.

Bi-elliptic: No examples, as h1,1 ≥ 2.

κ = 1: These are the elliptic surfaces. We have h1,1 ≥ 2, hence the are no examples among

the elliptic surfaces.

κ = 2: These are surfaces of general type. Here we recall that

τ = 2pg + 2 − h1,1 = 1

3
(c2

1 − 2χtop) (Hirzebruch)

1 − q + pg =
1

12
(c2

1 + χtop) (Noether),

where c1 ∶= c1(TS) = −c1(KS) and χtop is the topological Euler characteristic. If

h1,1 = 1,

pg+q =
1

3
(c2

1−2χtop)−
1

12
(c2

1+χtop) =
1

4
(c2

1−3χtop) ≤ 0 (Bogomolov −Miayoka −Yau),

so that necessarily pg = q = 0, so that the surface is a fake P2.

Corollary 3.1. No smooth projective surface with positive-definite intersection form is

a complete intersection

Proof. Suppose that S is a complete intersection of type (d1, . . . , dk) in P2+k. LetH1, . . . ,Hk

denote the defining hypersurfaces. By adjunction formula, the canonical divisor KS is
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equal to

KS = (KP2+k +H1 +⋯ +Hk)∣S

= ((−2 − k − 1) + d1 +⋯ + dk)H ∣S ,

where H is the hyperplane divisor in P2+k. Since we require pg = h0(KS) = 0, we must

also have h0(OP2+k((−k − 3) + d1 +⋯ + dk)∣
S
) = 0. But then it is certainly necessary that

k + 3 > d1 +⋯ + dk,

as otherwise h0(OP2+k((−k − 3) + d1 + ⋯ + dk)) > 0. The only possibilities for types are

(2), (3) and (2,2). The surface X(2) can be realized as the image of the Segre embedding

(up to a change of coordinates), so h1,1(X(2)) = 2. The fact that h1,1(X(3)) ≥ 2 may be

seen from the fact that X(3) contains exactly 27 lines, with not all pairwise intersections

of the lines equal (and, up to relabeling, the 27 lines on every smooth cubic have the

same intersection matrix). Finally, by theorem 4.2 we have h1,1(X(2,2)) = 4.
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Chapter 4

Complete intersections with

positive-definite intersection form, I

In this chapter we obtain a full list of smooth complete intersections with positive-definite

intersection form. This is theorem 4.2. In the following chapter, we shall identify the

lattices that occur.

4.1 Intersection form and the complex De Rham co-

homology

Let X be a smooth projective variety of dimension n. Then X may be viewed as a

compact Kähler manifold, with one choice of Kähler form coming from the Fubini-Study

metric. We denote the intersection form on Hn(X) by Q.

Extending scalars to R (using that Hn(X,R) =Hn(X)⊗R by the universal coefficient

theorem), we obtain a real unimodular bilinear form on Hn(X,R) agreeing with Q on

the embedding Hn(X) ↪ Hn(X,R). We denote the real extension of Q to Hn(X,R) by

Q again, by abuse of notation.

Now De Rham’s theorem gives isomorphisms of real vector spaces Hk
DR(X,R) ≅

Hk(X,R) for each 0 ≤ k ≤ 2n. Together with the above paragraph, this fact suggests
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that the intersection form on Hn(X) should have an interpretation from the point of

view of calculus of differential forms on X. Such an interpretation is given by the follow-

ing well-known lemma:

Lemma 4.1. For α,β ∈Hn(X,R), we have

Q(α,β) = ∫
X
α ∧ β,

where on the right side we have identified the classes α,β ∈ Hn(X,R) with their images

in Hn
DR(X,R) under the De Rham isomorphism.

It will be helpful to further extend the bilinear form Q to the complex cohomology

Hn(X,C) = Hn(X) ⊗ C (universal coefficient theorem) to make use of the Hodge and

Lefschetz decompositions available on Hn(X,C) in studying Q. Towards this end, letting

ω denote a choice of Kähler form on X, we can define complex bilinear forms Bk on

Hk(X,C) =Hk
DR(X,C) for each 0 ≤ k ≤ n by

Bk(α,β) ∶= ∫
X
ωn−k ∧ α ∧ β ,

where by abuse of notation ω denotes the class of the Kähler form in H2(X,C). The

bilinear form Bk is well-defined on the level of cohomology by Stokes’ theorem.

Because Bk is complex-valued, it does not make sense to ask whether it is definite.

However, we make the following two observations: first, Bk is symmetric for k even and

alternating for k odd; second, we have Bk(α,β) = Bk(α,β), since ω is by definition real.

For each 0 ≤ k ≤ n, we may therefore define the Hermitian form

Rk(α,β) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Bk(α,β), k even

iBk(α,β), k odd

on Hk(X,C). Because the form Rk is Hermitian, it makes sense to ask whether Rk is

positive-definite.
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We make precise the relation between the forms Q and Rk in the case n even, k = n.

By lemma 4.1, the restriction of the form Rn to Hn(X,R) (the latter identified with its

natural embedding in Hn(X,C)) agrees with the form Q. Therefore we may recover Rn

from the values of Q on Hn(X) ⊂Hn(X,C) by extending Q sesquilinearly to Hn(X,C).

In particular, we have the following lemma:

Lemma 4.2. Let n = dimX be even. Then the intersection form Q is positive-definite

on Hn(X) if and only if the Hermitian form Rn is positive-definite on Hn(X,C).

4.1.1 The form Rk on the Lefschetz decomposition of Hk(X,C)

The following two lemmas show that the formRk is ‘well-behaved’ on the pieces LrHk−2r
prim (X,C)

of the Lefschetz decomposition of Hk(X,C). In combination with the Hodge-Riemann bi-

linear relations, the two lemmas will be key in deriving necessary and sufficient conditions

for the intersection form to be positive-definite in theorem 4.1.

Lemma 4.3. The Lefschetz decomposition is orthogonal for the Hermitian form Rk.

More precisely, if α ∈ LrHk−2r
prim (X,C) and β ∈ LsHk−2s

prim (X,C) with 2r < 2s ≤ k, we have

Rk(α,β) = 0.

Proof. Let α = ωr ∧ α′ and β = ωs ∧ β′, with α′ ∈ Hk−2r
prim (X,C) and β′ ∈ Hk−2s

prim (X,C)

primitive. We have ωn−k ∧α ∧ β = (−1)(k−2r)(k−2s) (ωn−k+r+s ∧ α′) ∧ β′. Since r + s ≥ 2r + 1,

we have ωn−k+r+sα′ = 0. Hence Rk(α,β) = 0.

Lemma 4.4. The Hermitian form Rk induces the form Rk−2r on the LrHk−2r
prim (X,C) part

of the Lefschetz decomposition of Hk(X,C). More precisely, for α,β ∈ LrHk−2r
prim (X,C) ⊂

Hk(X,C), we have Rk(α,β) = Rk−2r(α′, β′), where α = Lrα′ and β = Lrβ′.

Proof. The proof is a simple computation which we carry out for the case k even. In this
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case

Rk(α,β) = Bk(Lrα′, Lrβ′)

= Bk(Lrα′, Lrβ′) (since ω is real)

= ∫
X
ωn−k ∧ (ωr ∧ α′) ∧ (ωr ∧ β′)

= (−1)(k−2r)2r ∫
X
ωn−(k−2r) ∧ α′ ∧ β′

= Rk−2r(α′, β′),

since (k − 2r)2r is even.

4.1.2 Hodge-Riemann bilinear relations

Let k be even. We write down the Hodge-Riemann relations identifying the parts of the

Hodge decomposition of Hk
prim(X,C) on which the Hermitian form Rk(α,β) is positive-

or negative-definite.

Theorem 4.1. Let p + q = k. For any α ∈Hp,q
prim(X,C), we have

(−1)(p−q+k(k−1))/2Rk(α,α) ≥ 0

with equality if and only if α = 0.

We observe that, since p + q = k is even, p − q = (p + q) − 2q is also even. Also, k(k − 1) is

clearly even, since one of k and k − 1 is even. Therefore (p − q + k(k − 1))/2 is an integer.

For a proof of the relations, invoking the ‘Kähler identities’, please see [14] pp. 150–153.

Remark. Similar relations hold in the case k odd—see [14] pp. 152–153.

The Hodge-Riemann relations imply the following useful characterization of the pieces

of the Hodge decomposition of the middle cohomology on which the intersection form is

positive-definite:
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Proposition 4.1. Let n = dimX be even. Then the intersection form on Hn(X) is

positive-definite if and only if hp,qprim(X) = 0 for all p, q with p ⋅ q odd.

Proof. By lemma 4.2, it is equivalent to show that the Hermitian form Rn on Hn(X,C)

is positive-definite if and only if hp,qprim(X) = 0 for all p, q with p ⋅ q odd. Motivated by the

Lefschetz decomposition of the middle cohomology

Hn(X,C) = ⊕
2r≤n

LrHn−2r
prim (X),

and lemmas 4.4 and 4.3, we begin by finding necessary and sufficient conditions for the

Hermitian form R2k to be positive-definite on Hn−2k
prim (X,C). Towards this end, we have

the following claim:

Claim. For each 0 ≤ 2k ≤ n, the Hermitian form R2k on H2k
prim(X,C) is positive-definite

if and only if hp,qprim(X) = 0 for all p, q with p + q = 2k and p ⋅ q odd.

Proof of claim. Let α ∈ Hp,q
prim(X), with p + q = 2k. The Hodge-Riemann relation for R2k

on Hp,q
prim(X,C) is

(−1)(p−q+2k(2k−1))/2R2k(α,α) ≥ 0,

with equality if and only if α = 0.

Suppose first that the Hermitian formR2k is positive-definite. Then by above hp,qprim(X) =

0 whenever (p − q + 2k(2k − 1))/2 is odd. The latter implies that

p − q + 2k(2k − 1) ≡ 2 mod 4 Ô⇒ p − q + 4k2 − 2k ≡ 2 mod 4

Ô⇒ p − q − (p + q) ≡ 2 mod 4

Ô⇒ −2q ≡ 2 mod 4,

which shows that q is odd. Since q = k − p and k is even, it follows that p is odd, hence

p ⋅q is odd. To see the converse, simply note that each of the steps of the argument above

was reversible.
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We now apply the claim to each component LkHn−2k
prim (X,C) of the Lefschetz decompo-

sition. Using the observation that the form Rn induces the form Rn−2k on this component

(lemma 4.4), we find that Rn is positive definite on the component LkHn−2k
prim (X,C) if and

only if hp,qprim(X) = 0 for all p, q with p + q = n − 2k and p ⋅ q odd. Then by orthogonality

of the Lefschetz decomposition for Rn (lemma 4.3), we have that Rn is positive-definite

on Hn(X,C) if and only if hp,qprim(X) = 0 for all p, q with p + q = n − 2k for some 2k ≤ n

and p ⋅ q odd. Finally, by Serre duality Rn is positive-definite on Hn(X,C) if and only if

hp,qprim(X) = 0 for all p, q.

It follows that a smooth projective variety X has a positive-definite intersection

form on its middle (integral) cohomology only if h1,1
prim(X) = 0, hence only if h1,1(X) =

h0,0(X) = 1. By the Lefschetz theorem on (1,1) classes, NS(X) = H1,1(X) ∩H2(X,Z)

(here H2(X,Z) is identified with its natural image in H2(X,C)), whence necessarily

rkZNS(X) = 1. We have shown:

Corollary 4.1. A smooth projective variety with positive-definite intersection form on

its middle cohomology necessarily has Picard number one.

4.2 Which complete intersections have a positive-

definite intersection form?

This section is devoted to classifying the types d = (d1, . . . , dr) of the smooth complete

intersections X(d) in Pn+r whose intersection form on the middle cohomology Hn(X(d))

is positive-definite. We have
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Theorem 4.2. The smooth complete intersections X(d) with positive-definite intersec-

tion form on their middle cohomology are exactly those of the following type and dimen-

sion:

d n ∶= dimX(d) rankHn(X(d))

(2) 4s (s ≥ 1) 2

(2,2) 4s (s ≥ 1) 4(s + 1)

As part of the proof, we shall also show the following statement, useful in chapter 5.

Lemma 4.5. The rank of the middle cohomology of a smooth quadric hypersurface in

P2k+1 (k a positive integer) is 2.

4.2.1 Proof of theorem 4.2

Let X(d) be a smooth complete intersection of dimension n and type d = (d1, . . . , dr)

in Pn+r and suppose X has a positive-definite intersection form. We may assume that n

is even, say n = 2m, as the cup product is antisymmetric for n odd. Moreover, because

no smooth projective surface has a positive-definite intersection form (corollary 3.1), we

may assume m > 1. This is the one step that uses the classification of smooth projective

surfaces with positive-definite intersection form in Chapter 3.

We now use the following theorem to see that the only part of the integral cohomology

of a smooth complete intersection that doesn’t coincide with the cohomology of projective

space of the same dimension is the middle cohomology.

Theorem 4.3 (Lefschetz theorem on hyperplane sections). Let X ⊂ PN be an n-dimensional

projective variety (not necessarily smooth) with a choice of embedding in PN and Y =

PN−1 ∩X a hyperplane section such that U ∶=X ∖ Y is smooth and n-dimensional. Then

the morphism Hk(X,Z) → Hk(Y,Z) induced by the inclusion Y ↪ X is an isomorphism

for k < n − 1 and is injective for k = n − 1.

Proof. See [15], pp. 33–34.
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Corollary 4.2. Let X = X(d) be a smooth complete intersection in Pn+r, with d =

(d1, . . . , dr). Then for all i ≠ n,

H i(X,Z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z σi, i even

0, i odd

where σ is defined as the hyperplane section X ∩Pn+r−1 for a general Pn+r−1 (equivalently,

σ is the image of the hyperplane class H ∈ H2(Pn+r,Z) under the map H2(Pn+r,Z) →

H2(X,Z) induced by the inclusion).

Proof. It is enough to show the theorem for r = 1. Let X be a hypersurface of degree d

in Pn+1. Let v ∶ Pn+1 → PN be the degree d Veronese embedding (where we have abused

notation by omitting the subscript on vd), with N = (n+1+d
d

)−1. Then v(X) is a hyperplane

section of the image of Pn+1 in PN , hence we may apply the theorem on hyperplane

sections to conclude that the rational cohomology of v(X) agrees with that of v(Pn+1)

outside of Hn(X,Q). Since v is biregular, in particular H i(Pn+1,Z) ≅H i(v(Pn+1),Z) and

H i(X,Z) ≅H i(v(X),Z) for all 0 ≤ i ≤ 2(n + 1), which shows the claim.

So the only interesting part of the integral cohomology of X is Hn(X). In particular,

σ ∈H1,1(X) because it is the cohomology class of a cycle, so we have hp,qprim(X) = 1− 1 = 0

for all p, q with p+q ≠ n. By proposition 4.1, we further have hp,qprim(X) = 0 for p ⋅q odd and

p + q = n. We wish to show that the last condition turns out to place a strict restriction

on the Hodge decomposition of Hn(X,C), which does not hold for most possibilities for

d.

We begin by defining the following generating polynomial. Let X be a smooth pro-

jective variety (not necessarily a complete intersection) and set

χy(X) ∶=
n

∑
p=0

(
n

∑
q=0

(−1)qhp,q(X)) yp

We observe that substituting y = −1 in χy(X) recovers the topological Euler characteristic
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of X. Similarly, in the case n even, substituting y = 1 recovers the signature of the

symmetric form Bn on Hn(X,R) (this is one version of the Hodge Index theorem, as it

appears in, say, [14] Theorem 6.33). Substituting y = 0 gives the Euler characteristic of

the structure sheaf of X.

In case X =X(d) is a complete intersection, we have the following

Theorem 4.4 (Hirzebruch). If X is a complete intersection of type (d1, . . . , dr) in Pn+r,

then χy(X) is equal to the coefficient of zn+r in

1

(1 − z)(1 + yz)

r

∏
i=1

(1 + yz)di − (1 − z)di
(1 + yz)di + y(1 − z)di

.

Proof. See [8], pg. 160. The proof relies on the Hirzebruch-Riemann-Roch theorem.

Using theorem 4.4 and elementary manipulations with formal power series Deligne

showed the following:

Theorem 4.5 (Deligne). With notations as above,

a). Let p ≤ p′ ≤ q′ ≤ q with p + q = p′ + q′. Then

hp,qprim(X(d),C) ≤ hp
′,q′

prim(X(d),C).

b). For q ≤ p, hp,qprim(d) ≠ 0 if and only if

q > p + q + r −∑di
dr

.

Proof. See [3] pp. 54 – 58.

The two parts of theorem 4.5 motivate the following definition:

Definition 4.1. Let X be a smooth projective variety of dimension n. Then X is said

to have coniveau c (sometimes also called Hodge level c) if c is the lowest integer such

that hn−c,cprim (X(d),C) ≠ 0.
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Remark. Since hn−c,cprim (X,C) = hc,n−cprim (X,C) by symmetry under complex conjugation, X

has coniveau ≤ ⌊n2 ⌋.

Remark. Theorem 4.5-a does not hold for general smooth projective varieties. For exam-

ple, a rigid Calabi-Yau threefold has the Hodge diamond

1

0 0

0 h1,1 0

1 0 0 1

0 h1,1 0

0 0

1

(see [2], pg.517).

Finally, we restate theorem 4.5 for the middle cohomology of a smooth complete

intersection in the following convenient form:

Theorem 4.6. Let d = (d1, . . . , dr). Then X(d) ⊂ Pn+r has coniveau ≥ c if and only if

n + r ≥
r

∑
i=1

di + (c − 1)dr.

We now proceed to the proof of the classification. We consider two cases according

to whether m = (dimX)/2 is odd or even:

� The case m ≡ 0 mod 2: The Hodge decomposition of the middle primitive coho-

mology Hn
prim(X,C) looks like

Hn,0
prim(X)⊕⋯⊕Hm+1,m−1

prim (X)⊕Hm,m
prim(X)⊕Hm−1,m+1

prim (X)⊕⋯⊕H0,n
prim(X).

Applying proposition 4.1, we have hm+1,m−1
prim (X) = hm−1,m+1

prim (X) = 0, hence by the-

orem 4.5 all parts of the Hodge decomposition except possibly Hm,m
prim(X) are zero.

47



Therefore X is of coniveau ≥m. By theorem 4.6, we have

2m + r ≥
r

∑
i=1

di + (m − 1)dr, (4.1)

which may be rearranged to

r ≥
r−1

∑
i=1

di +m(dr − 2) ≥ 2(r − 1).

Now r ≥ 2(r − 1) is quickly seen to be equivalent to r ≤ 2, so the only possibilities

for r are r = 1 and r = 2, which we investigate in turn.

○ r = 1: We have

2m + 1 ≥m ⋅ d1 ⇐⇒ d1 ≤ 2 + 1

m
< 3 for m > 1.

The only possibility for d is (d1) = (2) (with no additional restrictions on m).

○ r = 2: We have

2(m + 1) ≥ d1 +md2 ≥ 2(m + 1).

The only possibility for d is (d1, d2) = (2,2) (with no additional restrictions on

m).

It is immediate to check that both d = (2) and d = (2,2) satisfy the inequality (4.1)

with no additional restrictions on m.

� The case m ≡ 1 mod 2: Proposition 4.1 implies that hm,mprim(X) = 0, hence hm,m(X) =

hm−1,m−1(X) = 1. The Hodge decomposition of the primitive middle cohomology

Hn
prim(X,C) looks like

⋯⊕Hm+2,m−2
prim (X)⊕Hm+1,m−1

prim (X)⊕Hm,m
prim(X)⊕Hm−1,m+1

prim (X)⊕Hm−2,m+2
prim (X)⊕⋯
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Arguing as in the previous case, proposition 4.1 and theorem 4.5 imply that X is

of coniveau ≥ (m − 1). We investigate the restrictions that the coniveau condition

imposes on d and show that for all possibilities for d and m, hm,m(X) ≠ 1. By

theorem 4.6,

2m + r ≥
r

∑
i=1

di + (m − 2)dr,

which may be rearranged to

r ≥
r−1

∑
i=1

di + dr(m − 1) − 2m ≥ 2(r − 1) + 2(m − 1) − 2m = 2(r − 2).

Now, r ≥ 2(r − 2) is equivalent to r ≤ 4. We investigate the cases r = 1,2,3,4 in

turn.

○ r = 1: We have

2m + 1 ≥ (m − 1)d1 ⇐⇒ d1 ≤ 2 + 3

m − 1
.

The possibilities for d are

* d = (d1) = (2) (with no additional restrictions on m)

* d = (d1) = (3), m = 3. (A cubic in P7).

○ r = 2: We have

2(m + 1) ≥ d1 + (m − 1)d2 ≥ 2 + (m − 1)d2.

Rearranging,

d2 ≤
2m

m − 1
= 2 + 2

m − 1
.

The possibilities for d are

* d = (d1, d2) = (2,2) (with no additional restrictions on m)

* d = (d1, d2) = (2,3), m = 3. (Complete intersection of a quadric and a cubic

in P8).
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(In the case d = (3,3), the original inequality is not satisfied for m > 1).

○ r = 3: We have

2m + 3 ≥ d1 + d2 + (m − 1)d3 ≥ 4 + (m − 1)d3.

Rearranging,

d3 ≤
2m − 1

m − 1
= 2 + 1

m − 1
< 3 for m > 1.

The only possibility for d is (d1, d2, d3) = (2,2,2) with no additional restrictions

on m.

○ r = 4: We have

2m + 4 ≥ d1 + d2 + d3 + (m − 1)d4 ≥ 2m + 4.

The only possibility for d is (d1, d2, d3, d4) = (2,2,2,2) with no additional restric-

tions on m.

Summarizing, the possibilities for d in the case m ≡ 1 mod 2 are the ‘families’

of complete intersections of one, two, three and four quadrics with no additional

restrictions on m, as well as the ‘sporadic cases’ of a cubic in P7 and a complete

intersection of a quadric and a cubic in P8. We show that hm,m(X) ≠ 1 in all of the

above possibilities.

To find hm,m(X), we observe that in the case X = X(d) of dimension n = 2m, we

have

(−1)mhm,m(X) =
n

∑
q=0

(−1)qhm,q(X),

as all terms other than hm,m(X) in the right-hand sum are zero (this may be seen

from, say, the description of the Hodge diamond of X obtained by applying the

Lefschetz theorem on hyperplane sections). We now apply Hirzebruch’s generating
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series: the coefficient of ymz2m+r of

1

(1 − z)(1 + yz)

r

∏
i=1

(1 + yz)di − (1 − z)di
(1 + yz)di + y(1 − z)di

is (−1)mhm,m(X). The observation that only the terms of the form ymz2m+r are rele-

vant somewhat simplifies the computations that follow, as some of the intermediate

terms may be omitted.

We begin with a preliminary computation useful for dealing with the families of

quadrics. Each term of the product ∏r
i=1

(1+yz)di−(1−z)di

(1+yz)di+y(1−z)di
in these cases looks like

(1 + yz)2 − (1 − z)2

(1 + yz)2 + y(1 − z)2
= (1 + 2yz + y2z2) − (1 − 2z + z2)

(1 + 2yz + y2z2) + y(1 − 2z + z2)

= 2z(1 + y) + z2(y2 − 1)
1 + y + yz2(1 + y)

= (1 + y)z(2 + z(y − 1))
(1 + y)(1 + yz2)

= z ⋅ (1 + yz) + (1 − z)
1 + yz2

Now, the coefficient of ymz2m+r in

1

(1 − z)(1 + yz)
( (1 + yz)2 − (1 − z)2

(1 + yz)2 + y(1 − z)2
)
r

= 1

(1 − z)(1 + yz)
zr (((1 + yz) + (1 − z))

1 + yz2
)
r

is the coefficient of ymz2m = (yz2)m in

1

(1 − z)(1 + yz)
((1 + yz) + (1 − z)

1 + yz2
)
r

.

Motivated by this observation, somewhat informally we let O stand for the terms

not of the form (yz2)m for some m ≥ 0 in C[[y, z]], the ring of formal power series

in y and z with coefficients in C. Thus for any f(y, z) ∈ C[[y, z]], we can write

f(y, z) =
∞

∑
d=0

ad(yz2)d +O.
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Finally, we have the useful identity

1

(1 + yz2)r
=

∞

∑
d=0

(−1)d(d + r − 1

r − 1
)(yz2)d

for all r ≥ 1.

○ The case d = (2), m ≡ 1 mod 2: We have

1

(1 − z)(1 + yz)
((1 + yz) + (1 − z)

1 + yz2
) =

∞

∑
d=0

(−1)d(yz2)d ⋅ (
∞

∑
j=0

zj +
∞

∑
k=0

(−1)k(yz)k)

=
∞

∑
d=0

(−1)d(yz2)d ⋅ (1 +O + 1 +O)

=
∞

∑
d=0

(−1)d2(yz2)d +O.

The coefficient of (yz2)m is (−1)m2, hence hm,m(X(2)) = 2 ≠ 1 for all m > 0; in

particular, for all m ≡ 1 mod 2.

Proof of lemma 4.5. We note that in the case of a smooth quadric hypersurface in

P2k+1, theorem 4.6 becomes the following statement: X(2) has coniveau ≥ c if and

only if 2k + 1 ≥ 2c. Since also c ≤ k, it follows that the only nonzero term of the

Hodge decomposition of the middle cohomology of a smooth quadric is hk,k(X(2)),

which the computation above shows is equal to 2 for all k. Hence also the rank of

H2k(X(2)) is equal to 2 for all k. This proves lemma 4.5.

Remark. Lemma 4.5 will be useful in determining the cup product lattice on the

middle cohomology of X(2) in section 5.1. In the case k = 1, the fact that the

middle cohomology of a smooth quadric in P3 has rank two is classical: such a

surface may be realized as the Segre embedding of P1 ×P1 in P3 and is in particular

doubly-ruled.
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○ The case d = (2,2), m ≡ 1 mod 2: We have

1

(1 − z)(1 + yz)
((1 + yz) + (1 − z)

1 + yz2
)

2

= 1

(1 + yz2)2

(1 − z)2 + 2(1 − z)(1 + yz) + (1 + yz)2

(1 − z)(1 + yz)

= 1

(1 + yz2)2
( 1 − z

1 + yz
+ 2 + 1 + yz

1 − z
)

=∶ 1

(1 + yz2)2
(A + 2 +B) .

Now,

A = (1 − z)
∞

∑
j=0

(−1)j(yz)j = 1 + yz2 +O,

B = (1 + yz)
∞

∑
j=0

zj = 1 + yz2 +O

and so

A + 2 +B = 2(2 + yz2) +O.

We also have

1

(1 + yz2)2
=

∞

∑
d=0

(−1)d(d + 1

1
)(yz2)d =

∞

∑
d=0

(−1)d(d + 1)(yz2)d.

Hence,

1

(1 + yz2)2
(A + 2 +B) = 2

∞

∑
d=0

(−1)d(d + 1)(yz2)d ⋅ (2 + yz2 +O)

= 2(
∞

∑
d=0

(2(−1)d(d + 1) + (−1)d−1d) (yz2)d) +O

The coefficient of (yz2)m is (−1)m 2(m + 2), hence hm,m(X(2,2)) = 2(m + 2) > 1

for all m ≡ 1 mod 2.
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○ The case d = (2,2,2), m ≡ 1 mod 2: We have

1

(1 − z)(1 + yz)
((1 + yz) + (1 − z)

1 + yz2
)

3

= (1 − z)3 + (1 + yz)3 + 3(1 − z)(1 + yz)(1 − z + 1 + yz)
(1 + yz2)3(1 − z)(1 + yz)

= 1

(1 + yz2)3
((1 − z)

2

1 + yz
+ (1 + yz)2

1 − z
+ 3(2 + yz − z))

=∶ 1

(1 + yz2)3
(C +D + 6 + 3yz − 3z)

= 1

(1 + yz2)3
(C +D + 6 +O) .

Now,

C = (1 − 2z + z2)
∞

∑
j=0

(−1)j(yz)j = 1 + 2yz2 + y2z4 +O,

D = (1 + 2yz + y2z2)
∞

∑
j=0

zj = 1 + 2yz2 + y2z4 +O

and so

C +D + 6 = 2(4 + 2yz2 + y2z4) +O.

We also have

1

(1 + yz2)3
=

∞

∑
d=0

(−1)d(d + 2

2
)(yz2)d.

Hence,

1

(1 + yz2)3
(C +D + 6 +O) =

∞

∑
d=0

(−1)d(d + 2

2
)(yz2)d ⋅ (2(4 + 2yz2 + y2z4)+O)

= 2(
∞

∑
d=0

(4(−1)d(d + 2

2
) + 2(−1)d−1(d − 1

2
) + (−1)d−2(d

2
)) (yz2)d)+O

The coefficient of (yz2)m is (−1)m(3m(m+3)+8), hence hm,m(X(2,2,2)) = 3m2+

9m + 8 > 1 for all m ≡ 1 mod 2.

○ The case d = (2,2,2,2), m ≡ 1 mod 2: Similarly to the above three cases,

one computes hm,m(X(2,2,2,2)) = 2 (8(m+3
3

) + 3(m+1
1

) + (m
3
)) = 10m3/3 + 17m2 +

83m/3 + 16 > 1 for all m ≡ 1 mod 2.
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○ The case d = (3), m = 3: One computes that the coefficient of y3z7 in

1

(1 − z)(1 + yz)
(1 + yz)3 − (1 − z)3

(1 + yz)3 + y(1 − z)3

is 71. So h3,3(X(3)) = 71 ≠ 1.

○ The case d = (2,3), m = 3: One computes that the coefficient of y3z8 in

1

(1 − z)(1 + yz)
(1 + yz)2 − (1 − z)2

(1 + yz)2 + y(1 − z)2

(1 + yz)3 − (1 − z)3

(1 + yz)3 + y(1 − z)3

is 252. So h3,3(X(2,3)) = 252 ≠ 1.
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Chapter 5

Complete intersections with

positive-definite intersection form, II

Having obtained a complete list of the types of smooth complete intersections with

positive-definite intersection form in theorem 4.2, we now classify the lattices that appear

as the cup product lattices on the middle cohomology of the varieties in the list. The mid-

dle cohomology of an even-dimensional quadric has rank two by lemma 4.5, with the cup

product lattice alternating between the identity lattice and the hyperbolic plane lattice as

the dimension is increased by two (in particular, positive-definite in dimensions divisible

by four). The cup product lattice of a smooth complete intersection of two quadrics in

P4k+2 is Γ
4(k+1)

. In particular, we have the wonderful result that the cup product lattice

of X(2,2) ⊂ P6 is E8.

5.1 Special forms of equations defining quadrics and

complete intersections of two quadrics

Lemma 5.1. a) The quadric hypersurface in Pn defined as the vanishing locus of the

form Q = ∑n
i=0Z

2
i (where Zi are coordinates of Pn) is smooth.
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b) Up to a change of coordinates, every smooth quadric hypersurface in Pn is the vanishing

locus of the form Q in a).

c) If Q and Q′ are the forms

Q =
n

∑
i=0

Z2
i and Q′ =

n

∑
i=0

aiZ
2
i where ai ≠ aj for i ≠ j

then the intersection {Q = 0} ∩ {Q′ = 0} in Pn is smooth of codimension 2.

d) Up to a change of coordinates, every smooth complete intersection of type (2,2) in Pn

is the intersection of hyperplanes defined by the forms Q and Q′ in c).

Proof of part d). Proceed by induction on n = dim(Pn). The base case is two smooth

conics in P2 intersecting in four points. A smooth conic in P2 intersects any line in two

points (in particular, contains no lines), so the four points are in general position. So

there is a PGL(3,C) action taking the four points to the points

[1 ∶
√

2i ∶ 1], [−1 ∶
√

2i ∶ 1], [1 ∶ −
√

2i ∶ 1], [−1 ∶ −
√

2i ∶ 1],

which are the intersection of the quadrics

Z2
0 +Z2

1 +Z2
2 = 0,

Z2
0 + 2Z2

1 + 3Z2
2 = 0.

Now proceed to the general case. Let X be a smooth complete intersection of type (2,2)

in Pn. First, we show

Claim. We may assume that the definining quadrics Q1 and Q2 of X have full rank

(therefore are smooth and their associated symmetric forms nondegenerate).

Proof. Look at the pencil λQ1 +µQ2, [µ ∶ λ] ∈ P1. By Bertini’s theorem, singularities of a

general member of the pencil can occur only on the base points of the linear series, which
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is X. Since X is smooth, a general member of the pencil is smooth, so up to a change of

generators Q1 and Q2 have full rank.

Let ⟨⋅, ⋅⟩Q denote the symmetric biliinear form associated to a quadric Q.

We begin by showing that to set up the induction on dimension, it is enough to find a

hyperplane H and v ∈ Pn∖X such that H = v⊥Q1
= v⊥Q2

, where v⊥Qj ∶= {w ∈ Pn ∶ ⟨v,w⟩Qj = 0}

for j = 1,2. Indeed, assuming existence of v and H, choose a basis w0, . . . ,wn of Cn+1

so that v = [1 ∶ 0 ∶ ⋯ ∶ 0] and H = P(span(w1, . . . ,wn)), so that H = {Z0 = 0}. We may

further scale w0 so that ⟨v, v⟩Q1 = 1. With respect to this basis, forms Q1 and Q2 look

like

Q1 = Z2
0 + ∑

1≤i,j

bijZiZj and Q2 = a0Z
2
0 + ∑

1≤i,j

cijZiZj.

Now X ∩H is a complete intersection of the two quadrics Q′
j ∶= Qj ∣H , j = 1,2 (with

the choice of coordinates above, identifying H with {Z0 = 0}, we have Q′
j = Qj([0 ∶ Z1 ∶

⋯ ∶ Zn]) for j = 1,2). Moreover, X ∩H has dimension n − 1. We check that X ∩H is

smooth if X is smooth, so that we’re done by induction. The matrix of partial derivatives

of Q1 and Q2 looks like

J(Z0, . . . , Zn) =
⎛
⎜⎜
⎝

2Z0 A11 ⋯ A1n

2a0Z0 A21 ⋯ A2n

⎞
⎟⎟
⎠

where the Aij = Aij(Z1, . . . , Zn) (in particular, the terms Aij don’t involve Z0). On the

other hand, the matrix of partial derivatives of Q′
1 and Q′

2 is simply

J ′(Z1, . . . , Zn) =
⎛
⎜⎜
⎝

A11 ⋯ A1n

A21 ⋯ A2n

⎞
⎟⎟
⎠

But, identifying H with {Z0 = 0}, if p ∈X ∩H, then p = [0 ∶ Z1 ∶ ⋯ ∶ Zn], so that

J(p) =
⎛
⎜⎜
⎝

0 A11 ⋯ A1n

0 A21 ⋯ A2n

⎞
⎟⎟
⎠
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has rank equal to the rank of J ′(Z1, . . . , Zn). Since X is smooth J(p) has full rank at all

points p ∈X and it follows that X ∩H is smooth.

It remains to show that we can find the desired point v. Let Q1 and Q2 continue

denoting a choice of nondegenerate quadrics cutting outX. By nondegeneracy, Qj induces

an isomorphism

Pn ψÐ→ Pn∗

v z→ v⊥Qj = {w ∈ Pn ∶ ⟨v,w⟩Qj = 0} =∶Hj,v.

We have the following interpretation of Hj,v in terms of the geometry of Qj:

Claim. Let v′ ∈ {Qj = 0} for j = 1 or j = 2. Then the image hyperplane Hj,v′ of v′ under

ψj is exactly the tangent space Tv′Qj to Qj at v′.

Proof. We recall that one characterization of Tv′Qj is that w ∈ Tv′Qj if and only if

Qj(v′ + tw) = ⟨v′ + tw, v′ + tw⟩Qj = ⟨v′, v′⟩Qj + 2t⟨v′,w⟩Qj + t2⟨w,w⟩Qj

has no t term. Since Hj,v′ ∶= {w ∈ Pn ∶ ⟨v′,w⟩Qj = 0}, the claim follows immediately.

Now the composition ψ2 ○ ψ−1
1 induces an automorphism of Pn∗:

Pn∗

Pn Pn∗
ψ−11

ψ2 ○ ψ
−1
1

ψ2

We use the following fact:

Claim. Any automorphism of Pn (hence Pn∗) has a fixed point.

Proof. Any automorphism corresponds to an element of PGL(n + 1,C) and any matrix

in GL(n + 1,C) has at least one eigenvector.
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Hence there exists v ∈ Pn with H1,v = ψ1(v) = ψ2(v) =H2,v. We claim that this v is not

a point of X, so that v satisfies the requirements above (with H = H1,v = H2,v). Indeed,

for any w ∈X, we have TwX = TwQ1 ∩ TwQ2. If we had v ∈X, then X would be singular

at v, as TvQ1 =H1,v =H2,v = TvQ2. Hence v ∉X, which completes the proof.

5.2 The cup product lattice on H2k(X(2)) ⊂ P2k+1

We shall determine the middle cohomology of a smooth quadric in P2k+1, k ≥ 1 by an

iterative construction, successively taking cones over linear spaces contained in smooth

quadrics of lower dimension.

Base step: Quadric in P3

Consider the image of the Segre embedding s1,1 given by1

s1,1 ∶ P1 × P1 Ð→ P3

([P ∶ U], [R ∶ S])↦ [PR ∶ US ∶ UR ∶ PS].

Naming the coordinates on the target [X ∶ Y ∶ Z ∶ W ], any point in the image clearly

lies on the quadric hypersurface Q ∶= {XY −WZ = 0}. One checks that in fact the

image is exactly the quadric Q. The Jacobian matrix of Q at point [X ∶ Y ∶ Z ∶ W ] is

(Y,X,−Z,−W ); this is never identically zero so Q is smooth. By lemma 5.1-a, it follows

that up to a change of coordinates on P3 every smooth quadric X(2) in P3 is the image

of the embedding s1,1.

By lemma 4.5, the rank of the middle cohomology H2(X(2)) is 2, so it is enough

to find two distinct cohomology classes in H2(X(2)). Let Hj ∶= [π−1
j (p)] ∈ H2(P1 × P1),

where j = 1,2, πj are projections from P1 × P1 to one of the factors and p ∈ πj(P1 × P1)

is a point in the projection. By the description of H●(P1 × P1,Z) in section 2.3, we have

1up to a permutation of coordinates on P3
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that {Hj}j=1,2 is a basis of H2(P1 ×P1). The Gram matrix of the interesection form with

this choice of basis is
⎛
⎜⎜
⎝

0 1

1 0

⎞
⎟⎟
⎠
.

Write s ∶= s1,1 for the Segre embedding and let Λ1,j ∶= s∗(Hj) ∈ H2(X(2)), j = 1,2. By

the projection formula, we have

Λ1,1 ⋅Λ1,2 = s∗(H1) ⋅ s∗(H2) = s∗ (H1 ⋅ s∗ (s∗H2)) .

Because s is a smooth embedding (and in particular has degree one), we have s∗s∗H2 =H2,

so Λ2
1,1 = Λ2

1,2 = 0 and Λ1,1 ⋅Λ1,2 = 1. In particular, Λ1,1 and Λ1,2 are a Z-basis for H2(X(2)).

In the classical picture of the double-ruling of a smooth quadric in P3, the pushforwards

Λ1,j of the classes Hj in P1×P1 are exactly the classes of lines contained in one of the two

rulings. This description makes it visible that any lines representing the classes Λ1,j have

self-intersection 0 and pairwise intersection 1. For the construction below, we write down

two concrete lines in Q intersecting in a point: take the images of P1×[1 ∶ 0] and [1 ∶ 0]×P1

under s1,1. The first consists of points {[P ∶ 0 ∶ U ∶ 0] ∈ Q}, which is the intersection of

hyperplanes {Y = 0} and {W = 0}; the second consists of points {[R ∶ 0 ∶ 0 ∶ S] ∈ Q},

which is the intersection of hyperplanes {Y = 0} and {Z = 0}. Call these lines Λ1,1 and

Λ1,2, by abuse on notation (Λ1,j, j = 1,2 also denote the classes of the lines in H2(X(2))).

The intersection Λ1,1 ∩Λ1,2 is the point [1 ∶ 0 ∶ 0 ∶ 0] ∈ Q.

Cone construction

Proposition 5.1. Let X(2) ⊂ P2k+1, (k ≥ 1) be a smooth quadric hypersurface. Then

there exist k-planes Λk,1 and Λk,2 contained in X(2) and intersecting along a (k−1)-plane

Γk.

Proof. Proceed by induction on k. The base case is the smooth quadric in P3. Suppose

the proposition holds for (k − 1); we show that it holds for k.
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Let x ∈ Q be a point with coordinates x = [W0 ∶ ⋯ ∶ W2k+1] and let TxQ be the

projective tangent plane to Q at x. We recall that TxQ is defined as the projective

closure of a tangent plane TxQ to Q in an affine chart containing x. In the case of a

hypersurface X in Pn defined by the homogeneous form F , TpX may be seen to be cut

out by the equation

TpX = {[Z0 ∶ ⋯ ∶ Zn] ∶
n

∑
i=0

∂F

∂Zi
(p)Zi = 0}

(see [7] pp. 181–182). Specializing to the case of a quadric in P2k+1, we have

TpQ = {[Z0 ∶ ⋯ ∶ Z2k+1] ∶W0Z0 +⋯ +W2k+1Z2k+1 = 0}.

Now consider Q′ ∶= Q ∩ TpQ. Using that TpQ ≅ P2k, Q′ is a degree 2 hypersurface in

P2k, hence a quadric. Since TpQ′ = TpQ ∩ Tp(TpQ) = TpQ, Q′ is clearly singular at

p. Using the Jacobian criterion, it is not hard to see that p is the only singular point

of Q′. By the general classification of quadrics, since the singular locus of Q′ is of

codimension 2k in P2k, it follows that Q′ has rank 2k. By lemma 5.1-b, up to a change of

coordinates on TpQ ≅ P2k, Q′ is given by the vanishing of the form U2
0 +⋯ + U2

2k−1 (here

[U0 ∶ ⋯ ∶ U2k] are homogeneous coordinates on TpQ). Hence Q′ is a cone with vertex

p over a smooth quadric Q′′ ⊂ P2k−1 = P2(k−1)+1. By induction hypothesis, there exist

(k − 1)-planes Λk−1,j, j = 1,2 contained in Q′′ and intersecting along a (k − 2)-plane Γk−1.

Now take Λk,j ∶= Cone(Λk−1,j, p) to be the cone over Λk−1,j with vertex p. Then Λk,j are

k-planes contained in Q′ ⊂ Q and intersecting along the (k−1)-plane Cone(Γk−1, p) =∶ Γk,

which completes the induction.

General case

We now show that the k-planes Λk,j, j = 1,2 give a Z-basis for H2k(X(2)).

Theorem 5.1. Let Q = X(2) be a smooth quadric hypersurface in P2k+1 (k ≥ 1). Then

the k-planes Λk,1, Λk,2 form a basis of H2k(Q), with Gram matrix of the intersection form
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equal to
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 0

0 1

⎞
⎟⎟
⎠
, k even

⎛
⎜⎜
⎝

0 1

1 0

⎞
⎟⎟
⎠
, k odd

.

Proof. By lemma 4.5, H2k(Q) has rank two. Therefore it is enough to establish the state-

ment about the Gram matrix. For this, we perform the following two excess intersection

computations:

By corollary 2.3, for all k ≥ 1 and j = 1,2

NQ/P2k+1 = OP2k+1(2)∣
Q
,

NΛk,j/P2k+1 =
k+1

⊕
i=1

OP2k+1(1)∣
Λk,j

and

NΓk/P2k+1 =
k+2

⊕
i=1

OP2k+1(1)∣
Γk

,

so that

c(NQ/P2k+1) = (1 + H ∣Q),

c(NΛk,j/P2k+1) = (1 + H ∣Λk,j)
k+1 and

c(NΓk/P2k+1) = (1 + H ∣Γk)
k+2.

Then by lemma 2.9, writing H for H ∣Γk

c(NΛk,j/Q
) = (1 +H)k+1

(1 + 2H)
and

c(NΓk/Q
) = (1 +H)k+2

(1 + 2H)
.
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Applying corollary 2.2, the self-intersection numbers of the k-planes Λk,j are

[Λk,j]2 = ∫
Λk,j

c(NΛk,j/Q
) = ∫

Λk,j

(1 +H)k+1

1 + 2H
.

Expanding 1/(1 + 2H) in a power series and applying the binomial theorem (using that

Hk+1 = 0 in H●(Λk,j,Z) ≅H●(Pk,Z)),

(1 +H)k+1

1 + 2H
= (

k

∑
j=0

(k + 1

j
)Hj)(

k

∑
i=0

(−2)iH i) .

The coefficient of Hk is

k

∑
j=0

(k + 1

k − j
) (−2)j = 1

−2

k

∑
j=0

(k + 1

j + 1
) (−2)j+1 = (1 − 2)k+1 − 1

−2
= 1 − (−1)k+1

2
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, k even

0, k odd
.

Similarly, by excess intersection formula we have (writing H for H ∣Γk)

[Λk,1] ⋅ [Λk,2] = ∫
Γk

c(N
Λk,1/Q

) ⋅ c(N
Λk,2/Q

)
c(N

Γk/Q
)

= ∫
Γk

((1 +H)k+1

1 + 2H
)

2

((1 +H)k+2

1 + 2H
)
−1

= ∫
Γk

(1 +H)k
1 + 2H

.

The last term is formally identical to

∫
Λk−1,j

(1 +H)k
1 + 2H

,

so we have

[Λk,1] ⋅ [Λk,2] = ∫
Γk

(1 +H)k
1 + 2H

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, k even

1, k odd
,

completing the proof.
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5.3 The cup product lattice on H4k(X(2, 2)) ⊂ P4k+2

The next two sections are devoted to classifying the cup product lattices for smooth

intersections of two quadrics in P4k+2 (k ≥ 1). To keep the notation as clear as possible, we

first carry out the arguments for the case k = 1, X =X(2,2) ⊂ P6. Then, in the following

section, we show that the arguments for the general case are simple generalizations of the

arguments for case k = 1.

5.3.1 The case k = 1

Our strategy for identifying the cup product lattice on the middle cohomology H4(X) of

X will be to find a set of 2-planes contained in X and take linear combinations of their

Poincaré dual classes to find a generating set for H4(X). The pairwise intersections of

the 2-planes computed by excess intersection formula will then determine the cup product

lattice. To begin, we need to show that X contains at least one 2-plane; the remaining

generators will then be constructed from this initial 2-plane.

We set up the following incidence correspondence. The space of quadrics in P6 is

the projective space P27, where 27 = (6+2
2
) − 1—it is the projectivization of the vector

space generated by monomials of degree 2 in z0, . . . , z6 (where the zi denote homogeneous

coordinates of P6). Let Z be the subset of G(2,6) × P27 defined as

Z ∶= {(Λ,Q) ∶ Λ ⊂ Q} ⊂ G(2,6) × P27

G(2,6) P27

π1 π2 (5.1)

We study the fiber π−1
1 (Λ0) of π1 over a fixed 2-plane Λ0 ∈ G(2,6). The restriction of

π2 to π−1
1 (Λ0) is clearly one-to-one, so that the fiber is isomorphic to π2(π−1

1 (Λ0)). Points

of the latter correspond to quadric hypersurfaces in P6 containing Λ0. Such a hypersurface

is given by a homogeneous degree 2 form F in z0, . . . , z6, with the additional requirement

that the restriction F ∣Λ0 of F to Λ0 is identically zero. Under the isomorphism Λ0 ≅ P2,
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F ∣Λ0 is a homogeneous degree 2 form in w0,w1,w2. We therefore have a map of vector

spaces

T ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Homogeneous degree 2 forms

in z0, . . . , z6

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Ð→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Homogeneous degree 2 forms

in w0,w1,w2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
F ↦ F ∣Λ0

such that the kernel of the map T may be identified with π2(π−1
1 (Λ0)). Since the map

T is surjective and the image is (2+2
2
) = 6-dimensional, the kernel is (6+2

2
) − 6 = 28 − 6 =

22-dimensional. We conclude that the fiber π−1
1 (Λ0) is isomorphic to P21, hence has

dimension 21.

To continue our analysis, we quote the well-known theorem on upper-semicontinuity

of fibre dimension and one of its corollaries:

Theorem 5.2. Let X be a projective variety and π ∶X Ð→ Pn a regular map; let Y = π(X)

be its image. For any q ∈ Y , let λ(q) ∶= dim(π−1(q)). Then λ(q) is a Zariski-upper-

semicontinuous function of q on Y . Moreover, if X0 ⊂ X is any irreducible component,

Y0 = π(X0) and λ0 ∶= minq∈Y0 λ(q), then

dim(X0) = dim(Y0) + λ0.

Proof. [7] pp. 139–141. The statement of the theorem is Corollary 11.13 on page 138.

Corollary 5.1. Let π ∶ X Ð→ Y be a regular map of projective varieties, with Y irre-

ducible. If all fibres π−1(p) are irreducible of the same dimension, then X is irreducible.

Proof. [7] p. 139. The statement is Theorem 11.14 on page 138.

Before we can use the above theorem to further analyze the correspondence (5.1), we
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need to demonstrate that Z is Zariski-closed in G(2,6) × P27. Towards this end, let

Γ1 ∶= {(Λ, p) ∶ p ∈ Λ} ⊂ G(2,6) × P6 and

Γ2 ∶= {(Q,p) ∶ p ∈ Q} ⊂ P27 × P6

be the universal families over G(2,6) and P27, respectively (in particular, Γ1 and Γ2 are

closed subsets of G(2,6) × P6 and P27 × P6, respectively). Let Γ be defined as

Γ ∶= {(Λ,Q, p) ∶ p ∈ Λ ∩Q} ⊂ G(2,6) × P27 × P6

G(2,6) × P6 P27 × P6

π1,3 π2,3 ,

where π1,3 and π2,3 are projection maps. Then as a set Γ is equal to π−1
1,3(Γ1) ∩ π−1

2,3(Γ2),

hence is a closed subset of G(2,6) × P27 × P6. Now let π ∶= π1,2∣Γ ∶ Γ Ð→ G(2,6) × P27

be the restriction of the projection π1,2 to Γ. For any Λ ∈ G(2,6) and Q ∈ P27, we have

π−1(Λ,Q) = Λ ∩Q, hence dim(π−1(Λ,Q)) ≤ 2. Then by theorem 5.2

Z = {(Λ,Q) ∈ G(2,6)×P27 ∶ dim(π−1(Λ,Q)) = 2} = {(Λ,Q) ∈ G(2,6)×P27 ∶ dim(π−1(Λ,Q)) ≥ 2}

is a Zariski-closed subset of G(2,6) × P27, as desired.

We can now apply theorem 5.2 to the correspondence (5.1). As G(2,6) is irreducible

and all fibres of π1 are isomorphic to P21 (hence irreducible of the same dimension) it

follows by corollary 5.1 that Z is irreducible. Then Z is dimG(2,6)+21 = 2(6−2)+21 = 33-

dimensional by the second part of theorem 5.2.

Now, it is well-known that a quadric hypersurface of dimension n contains linear

subspaces of each dimension less than or equal to the integer part of n/2, so π2 is surjective.

It follows from the second part of theorem 5.2 that for any Q ∈ P27, the fibre π−1
2 (Q) has

dimension ≥ 33 − 27 = 6. We’d like to show that the generic fibre is six-dimensional.

Let Vn ∶= {Q ∈ P27 ∶ dimπ−1
2 (Q) ≥ n}; this is a Zariski-closed subset of P27 by upper-

semicontinuity of fibre dimension. Moreover by above, Vm = P27 for all m ≤ 6. Then
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U ∶= {Q ∈ P27 ∶ dimπ−1
2 (Q) = 6} = V6 ∖ V7 = P27 ∖ V7 (the latter set is nonempty as by

construction the minimum fibre dimension 6 is reached over at least one Q ∈ P27). Since

V7 is a Zariski-closed subset of P27, this shows that U is a nonempty open dense subset

of P27. In this sense the generic fibre is six-dimensional.

For any Q ∈ P27 corresponding to a quadric in P6, we set the notation ΓQ ∶= {Λ ∈

G(2,6) ∶ Λ ⊂ Q} = π1(π−1
2 (Q)). The restriction of π1 to π−1

2 (Q) is one-to-one, so that ΓQ

is again 6-dimensional for each Q ∈ U . As dimG(2,6) = 12, we conclude that for any

quadrics Q,Q′ in U , ΓQ and ΓQ′ have complementary dimension in G(2,6). Next, we

show that this statement continues to hold for all smooth quadrics in P6. Towards this

end, we have the following lemma

Lemma 5.2. For any smooth quadric hypersurfaces Q,Q′ ⊂ P6, we have [ΓQ ] = [ΓQ′ ]

in H6(G(2,6),Z).

Proof. By lemma 5.1-b, there exist g, h ∈ PGL(n + 1,C) such that under the change of

coordinates of Pn induced by g and h, Q and Q′ respectively are defined by the vanishing

of the form ∑6
i=0Zi. Since PGL(n+ 1,C) is path-connected, there exist continuous paths

γ from id ∈ PGL(n + 1,C) to g and γ̃ from h to id, respectively. Then composition of

the paths γ and γ̃ induces a continuous deformation of Q to Q′. Finally, as elements of

PGL(n+1,C) take k-planes to k-planes, restricting this deformation to 2-planes contained

in Q induces a continuous deformation of ΓQ to ΓQ′ . Since cohomology is a discrete

invariant, it remains constant under continuous deformations and the lemma follows.

Now, it is well-known that the set of singular quadrics in P6 is parametrized by a

hypersurface in P27. In particular, the set of smooth quadrics in P6 is parametrized by

an open subset of P27. Since any two nonempty open subsets of P27 have nonempty

intersection, we conclude that there exists a smooth quadric Q0 ∈ U ⊂ P27, where U is the

open set of quadrics Q ∈ P27 for which the fibre π−1
2 (Q) is 6-dimensional. Then ΓQ is a

six-dimensional subset of G(2,6), so that [ΓQ0] ∈ H12(G(2,6),Z). But by corollary 5.2,

if Q is any smooth quadric, we have [ΓQ] = [ΓQ0]. In particular, ΓQ is six-dimenisonal
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for any smooth quadric Q. Hence any intersection of two smooth quadrics in P6 contains

finitely many 2-planes. Our next goal is to show that this number is not zero.

Lemma 5.3. The intersection of two smooth quadrics in P6 contains at least one 2-plane.

Proof. We put our knowledge of the additive structure of H●(G(2,6),Z) and the identity

(2.9) to work. There are five sequences a0, a1, a2 satisfying 0 ≤ a0 ≤ a1 ≤ a2 ≤ 4 and

a0 + a1 + a2 = 6. These are

a0, a1, a2 4 − a2,4 − a1,4 − a0

0,2,4 0,2,4

0,3,3 1,1,4

1,1,4 0,3,3

1,2,3 1,2,3

2,2,2 2,2,2

.

Hence

[ΓQ ] = [ΓQ′ ] = aσ0,2,4 + bσ0,3,3 + cσ1,1,4 + dσ1,2,3 + eσ2,2,2 for some a, b, c, d, e ∈ Z≥0

and

[ΓQ ] ⋅ [ΓQ′ ] = (a2 + 2bc + d2 + e2)[pt. ],

where [pt. ] denotes the class of a point in H12(G(2,6),Z).

To show existence of a 2-plane in Q∩Q′, it is enough to show that (a2+2bc+d2+e2) > 0,

as this will imply that ΓQ and ΓQ′ have nonempty intersection. In particular, showing

that d > 0 will suffice. To find d, we use the identity (2.9) once again: we have

d = (aσ0,2,4 + bσ0,3,3 + cσ1,1,4 + dσ1,2,3 + eσ2,2,2) ⋅ σ1,2,3 = [ΓQ ] ⋅ σ1,2,3.

We may choose a complete projective flag F = P0 ⊂ ⋯ ⊂ P6 such that P1 ∩Q consists
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of two points, and P3 ∩Q and P5 ∩Q are smooth quadrics in P3 and P5, respectively. The

conditions imposed on a plane Λ to lie in the intersection of ΓQ and SF1,2,3 are:

1. Λ ⊂ Q

2. Λ intersects P1 in a point

3. Λ intersects P3 in a line

4. Λ is contained in P5.

We claim that there are a total of 8 such 2-planes Λ.

First, P1 ∩Q consists of two points. By conditions (1) and (2), Λ must contain one of

these points. Choose one of the points, say p.

Now, P3∩Q is a smooth quadric in P3, which has a double-ruling seen in the previous

section. Therefore there are two lines contained in P3∩Q passing through p. By conditions

(1), (2) and (3), Λ must contain one of these lines. Choose one of the lines, say `.

Let V and W be the 6- and 2-dimensional vector spaces corresponding to the P5 part

of the flag F and the line `, respectively. Let F be the symmetric bilinear form associated

to the quadric Q′ ∶= P(V )∩Q. By our choice of flag, F is nondegenerate as Q′ is smooth.

Because ` ⊂ P(V ) ∩Q, we have F ∣W ≡ 0.

Each 2-plane Λ containing the line ` and contained inQ′ corresponds to a 3-dimensional

vector subspace P of V containing W such that F ∣P ≡ 0. Now 3-dimensional subspaces

of V containing W are in bijection with lines in V /W . As F is nondegenerate, W ⊥ is

a 6 − 2 = 4-dimensional subspace of V containing W . Hence, W ⊥/W is a 2-dimensional

subspace of V /W . It is not hard to see that F descends to a well-defined nondegenerate

bilinear form on W ⊥/W . Projectivizing, F defines a quadric in P(W ⊥/W ) ≅ P1, that is,

two points. Choosing either point gives a line in W ⊥/W corresponding to a 2-plane Λ

satisfying conditions (1)–(4) above.

Now suppose toward contradiction that U is a choice of 3-dimensional subspace of V

containing W , with F ∣U ≡ 0 and with U ∩W ⊥ ≠ U . Let p ∈ U ∖W ⊥ and let w ∈W be such
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that F (p,w) ≠ 0. Then F (p + w,p + w) = F (p, p) + F (w,w) + 2F (p,w) = 2F (p,w) ≠ 0.

Since p +w ∈ U , this is the desired contradiction.

Therefore the number of 2-planes satisfying (1)–(4) is 23 = 8.

Construction of generators of the cup product lattice on H4(X(2,2)), I

Let X = X(2,2) be a smooth complete intersection of two quadrics in P6. By a Bertini

argument, we may assume that the two defining quadrics are smooth, so that by lemma

5.3 X contains a 2-plane, call it P . Starting with P , we now construct seven 2-planes

Λ0, . . . ,Λ6 contained in X, each intersecting P in codimension one and pairwise inter-

secting in codimension 2. Using the excess intersection formula to compute the pairwise

cup products, we then show that certain linear combinations of the classes of the eight 2-

planes [P ] , [Λ0] , . . . , [Λ6] along with [H]2
, the square of the class of a hyperplane section

of X, form a set of generators for H4(X).

By lemma 5.1-d, up to a change of coordinates on P6, X is given as the intersection

of hypersurfaces defined by the forms

Q =
6

∑
i=0

Zi and Q′ =
6

∑
i=0

aiZi ai ≠ 0 for all i, ai ≠ aj for i ≠ j

in P6. For i = 0, . . . ,6, let πi be the rational map

P6 ∖ [0 ∶ ⋯ ∶ 1 ∶ ⋯0]Ð→ P5

given by projection to the hyperplane {Zi = 0} (equivalently, given by omitting the i-th

coordinate). None of the points [0 ∶ ⋯ ∶ 1 ∶ ⋯ ∶ 0] (here the i-th coordinate is 1 and the

rest 0) are on X (this is easily seen, say, from the non-vanishing of the form Q at these

points), so each πi restricts to a regular map on X. Let W0 = Z0, . . . ,Wi−1 = Zi−1,Wi =

Zi+1, . . . ,W5 = Z6 be the homogeneous coordinates induced on P5 by identifying it with

the hyperplane {Zi = 0} in X.
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Claim. The restriction πi∣X ∶X Ð→ P5 is a 2 ∶ 1 map ramified over the intersection of X

with the hyperplane {Zi = 0}, with image a smooth quadric in P5

Proof. To be in the image of πi∣X , [W0 ∶ ⋅ ⋅ ⋅ ∶W5] must have the property that there exists

a complex number Zi such that

W 2
0 +⋯ +W 2

5 +Z2
i = 0 and a0W

2
0 +⋯ + ai−1W

2
i−1 + aiZ2

i + ai+1W
2
i +⋯ + a6W

2
5 = 0.

Solving for Z2
i , we find the simultaneous conditions

Z2
i = − (W 2

0 +⋯ +W 2
5 ) and Z2

i = −
1

ai
(a0W

2
0 +⋯ + ai−1W

2
i−1 + ai+1W

2
i +⋯ + a6W

2
5 ) .

A common solution exists if and only if

ai(W 2
0 +⋯ +W 2

5 ) = a0W
2
0 +⋯ + ai−1W

2
i−1 + ai+1W

2
i +⋯ + a6W

2
5 ,

which is a quadric in P5, defined as the vanishing locus of the form

F ∶= (a0 − ai)W 2
0 +⋯ + (ai−1 − ai)W 2

i−1 + (ai+1 − ai)W 2
i +⋯ + (a6 − ai)W 2

5 .

Taking partials, we find

∂F

∂Wj

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2(aj − ai)Wj , j < i

2(aj+1 − ai)Wj , j ≥ i
.

Because ai ≠ aj for i ≠ j by the initial choice of coordinates, it follows by the Jacobian

criterion that the singular locus of F is the intersection of the coordinate hyperplanes

{Wj = 0}, j = 0, . . . ,5 in P5, hence empty. So the quadric {F = 0} ⊂ P5 is smooth.

Now, let p ∶= [W0 ∶ ⋯ ∶W5] be a point of {F = 0}. Look at πi∣−1
X (p). The coordinates

of each point [W0 ∶ ⋯ ∶ Zi ∶ ⋯ ∶W6] ∈ πi∣−1
X (p) ⊂X must satisfy Z2

i = −(W 2
0 +⋯+W 2

5 ) =∶ β.

The last equation has two distinct solutions for Zi if β is nonzero and a unique solution
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for Zi if β is zero. It follows that the map πi∣X is 2 ∶ 1, ramified over {Zi = 0} ∩X.

Now look at the restriction of the projection πi∣X to the 2-plane P ⊂X. We show that

this map is an inclusion. Since πi∣X has fibers consisting of one or two points over each

p ∈ πi∣X (X) by the above claim, we have that the degree deg(πi∣P ) of the restriction of

πi to P is either 1 or 2. The image πi∣P is a linear space and in fact of dimension 2, again

because of the fact that πi∣X has everywhere-finite fibers. Using the isomorphism P ≅ P2,

πi∣P ∶ P2 → P5 is given by homogeneous forms F0, . . . , F5, each of some fixed degree d. We

have the equality

deg(πi∣P )deg(πi∣P (P )) = d2,

which may be seen as follows: deg(πi∣P (P )) is by definition the number of points of

intersection of πi∣P (P ) with a generic codimension 2 linear subspace of P5. We may realize

a codimension 2 linear subspace as the intersection of two hyperplanes H1, H2 ⊂ P5. The

pullback of Hj to P2 under πi∣P is a degree d hypersurface and by Bezout the intersection

πi∣P (H1) ∩ πi∣P (H2) consists of d2 points. Now the map πi∣P is generically deg(πi∣P )-

to-one, so that the number of points of intersection of the image of P2 under πi∣P with a

generic codimension 2 linear subspace is d2/deg(πi∣P ), as desired. Since the image of P is

a linear space, so we have deg(πi∣P (P )) = 1, giving the necessary condition deg(πi∣P ) = d2.

The equation 2 = d2 has no solutions in integers, so necessarily deg(πi∣P ) = 1 and so d = 1.

It follows that πi∣P is an inclusion.

Finally, consider Yi ∶= πi∣−1
X (πi∣X (P )) ⊂X. Being the inverse image under a 2 ∶ 1 map

of a degree 1 variety, Yi has degree 2; being the inverse image of a pure-2-dimensional

variety under a finite map, Yi has pure dimension 2. Moreover, Yi contains the 2-plane P

as an irreducible component. By degree considerations, Yi contains exactly one irreducible

component other than P , necessarily of degree 1. Moreover, this other component must

intersect P along the section of P by the ramification locus of πi∣X , that is, intersecting

P along the codimension 1 linear subpace {Zi = 0} ∩ P . Because the second component

has degree 1, it is necessarily a linear space (of dimension 2). This is the desired new
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2-plane: call it Λi.

We have constructed 2-planes Λ0, . . . ,Λ6 intersecting P along distinct codimension 1

linear subspaces, hence pairwise distinct and distinct from P . It will be necessary to

know the codimension of pairwise intersections Λi ∩Λj, i ≠ j in Λi and Λj:

Claim. For any i ≠ j, Λi and Λj intersect along a codimension 2 linear subspace.

Proof. By above, P intersects Λi along the codimension 1 linear subspace P ∩ {Zi = 0} =

Λi ∩ {Zi = 0}. Therefore, the codimension 2 linear subspace

Λi ∩ {Zi = 0} ∩ {Zj = 0} = P ∩ {Zi = 0} ∩ {Zj = 0} = Λj ∩ {Zi = 0} ∩ {Zj = 0}

is contained in Λi ∩Λj.

Suppose toward contradiction that Λi and Λj intersect along a codimension 1 linear

subspace, write Λi ∩Λj =∶ Λ̃. We have that Λ̃ ∩ P = P ∩ {Zi = 0} ∩ {Zj = 0} and Λ̃ ∩ P is

a codimension 1 linear subspace of Λ̃. Let L be the linear subspace spanned by Λ̃ and

P—this is a 3-plane containing Λ1 ,Λ2 and P as codimension 1 linear subspaces.

Now consider Y ∶= L ∩ {Q = 0}, where Q is one of the quadratic forms defining X. If

L is not contained in the locus {Q = 0}, then Y is a dimension 2 (not necessarily smooth)

quadric hypersurface of L containing three 2-planes Λ1 ,Λ2 and P , which is impossible.

So L ⊆ {Q = 0}. But {Q = 0} is a smooth dimension 5 quadric hypersurface in P6, hence

can’t contain a 3-dimensional linear subspace. This is the desired contradiction.

Proposition 5.2. Let X = X(2,2) ⊂ P2k+2 be a smooth complete intersection of type

(2,2) and dimension 2k. Let Λ1 and Λ2 be k-planes contained in X and write Γ = Λ1∩Λ2

for the linear space formed by their intersection. Suppose that Γ is `-dimensional. Then

[Λ1] ⋅ [Λ2] = (−1)` ⌊1 + `
2
⌋ ,

where ⌊⋅⌋ denotes the integer part of ⋅.
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Proof. By corollary 2.3, we have

NX/P2k+2 = (OP2k+2(2)⊕OP2k+2(2))∣
X
,

NΛi/P2k+2 = (
k+2

⊕
i=1

OP2k+2(1))∣
Λi

, i = 1,2 and

NΓ/P2k+2 = (
2k+2−`

⊕
i=1

OP2k+2(1))∣
Γ

.

For a variety X ⊂ Pn, let HX denote the section X ∩ Pn−1 of X by a hyperplane.

The total Chern classes of the normal bundles above are

c(NX/P2k+2) = (1 + 2HX)2,

c(NΛi/P2k+2) = (1 +HΛi
)k+2, i = 1,2

c(NΓ/P2k+2) = (1 +HΓ)2k+2−`.

Applying lemma 2.9, we have

c(NΛi/X
) =

(1 +HΛi
)k+2

(1 + 2HΛi
)2
, i = 1,2 and

c(NΓ/X) =
(1 +HΓ)2k+2−`

(1 + 2HΓ)2
.

By excess intersection formula, we then have (writing H for HΓ )

[Λ1] ⋅ [Λ2] = ∫
Γ
((1 +H)k+2

(1 + 2H)2
)

2

((1 +H)2k+2−`

(1 + 2H)2
)
−1

= ∫
Γ

(1 +H)`+2

(1 + 2H)2
.

Therefore, we are after the coefficient of H` in

(1 +H)`+2

(1 + 2H)2
.
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Dividing (1 +H)`+2 by (1 + 2H)2 with remainder, we have

(1 +H)`+2 = p(H)(1 + 2H)2 + q(H), deg p = `, deg q ≤ 1. (5.2)

Expanding q in a Taylor series about −1/2, we have

q(H) = q (−1

2
) + q′ (−1

2
)(H + 1

2
) .

Letting H = −1/2 in (5.2), we find

(1

2
)
`+2

= 0 + q (−1

2
) ,

hence q(−1/2) = 1/2`+2. Differentiating (5.2) with respect to H, find

(` + 2)(1 +H)`+1 = p′(H)(1 + 2H)2 + 4p(H)(1 + 2H) + q′(H). (5.3)

Letting H = −1/2 in (5.3),

(` + 2) (1

2
)
`+1

= 0 + 0 + q′ (−1

2
) .

So that, putting the above together, we have

q(H) = 1

2`+2
+ ` + 2

2`+1
(H + 1

2
) = ` + 2

2`+1
H + ` + 3

2`+2
.

We now determine the coefficient of H` in p(H) = p`H`+⋯+p1H +p0. Since p` is also the

leading coefficient of p(H), we may recover it from the leading coefficient of p(H)(1+2H)2

by comparing the latter with the leading coefficient of (1 +H)`+2 and using the equality

(5.2) (because ` + 2 ≥ 2, the terms in q don’t contribute to the coefficient of H`+2 in the

right side of (5.2)). Clearly the coefficient of H`+2 of (1+H)`+2 is 1. Expanding the square

in (1+2H)2, we have p(H)(1+2H)2 = 4p`H
`+2 +other terms. Comparing coefficients, we
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have p` = 1/4.

Now divide both sides of (5.2) by (1 + 2H)2:

(1 +H)`+2

(1 + 2H)2
= p(H) + q(H)

(1 + 2H)2
.

Expanding 1/(1 + 2H)2 in a series,

q(H)
(1 + 2H)2

= (` + 2

2`+1
H + ` + 3

2`+2
)(

`

∑
j=0

(j + 1)(−2)jHj) ,

where the series expansion is truncated at the `-th term because Hj = 0 for all j > ` in

H●(Γ,Z). We then have

q(H)
(1 + 2H)2

= {` + 2

2`+1
(`(−1)`−12`−1) + ` + 3

2`+2
((` + 1)(−1)`2`)}H` + other terms.

Simplifying the coefficient, we have

` + 2

2`+1
(`(−1)`−12`−1) + ` + 3

2`+2
((` + 1)(−1)`2`) = (−1)` ((` + 1)(` + 3)

4
− `(` + 2)

4
)

= (−1)` 2` + 3

4
.

Putting everything together,

(1 +H)`+2

(1 + 2H)2
= (1

4
+ (−1)` 2` + 3

4
)H`+other terms = (−1)` ((−1)` + 3

4
+ `

2
)H`+other terms.

We are done if we can show that

((−1)` + 3

4
+ `

2
) = ⌊1 + `

2
⌋ for all ` ≥ 0.

But this is easily checked by considering the cases ` even and ` odd separately.
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Construction of generators of the cup product lattice on H4(X(2,2)), II

We now apply proposition 5.2 to find the pairwise cup products of the 2-planes P,Λ0, . . . ,Λ6

contained in a smooth complete intersection of type (2,2) in P6 constructed previously.

We have

[P ] ⋅ [P ] = (−1)2 ⌊1 + 2

2
⌋ = 2,

[Λi] ⋅ [Λi] = (−1)2 ⌊1 + 2

2
⌋ = 2, i = 0, . . . ,6

[P ] ⋅ [Λi] = (−1)1 ⌊1 + 1

2
⌋ = −1, i = 0, . . . ,6

[Λi] ⋅ [Λj] = (−1)0 ⌊1 + 0

2
⌋ = 1, i, j = 0, . . . ,6, i ≠ j.

Moreover, if H ⊂X is a hyperplane section of X, we have

[P ] ⋅ [H]2 = deg(P ) = 1,

[Λi] ⋅ [H]2 = deg(Λi) = 1, i = 0, . . . ,6

[H]2 ⋅ [H]2 = deg(X) = deg(Q1)deg(Q2) = 4.

The cup product lattice on H4(X(2,2))

We now have enough information to prove the following:

Theorem 5.3. The cup product lattice H4(X) of a smooth complete intersection X of

type (2,2) in P6 is isomorphic to the Γ8 (= E8) lattice.

For clarity, in the proof below we denote the intersection form on H4(X) by (α,β)↦ α∪β

instead of (α,β)↦ α ⋅ β to distinguish it from the bilinear form of the Γ8 lattice.

Proof. We recall that in lemma 2.3 we wrote down generators γ1, . . . , γ9 for Γ8. The idea

of the proof is to identify the elements γi with the following classes gi in H4(X):

gi ∶= ([Λi−1] − [Λi]) for i = 1, . . . ,6, g7 ∶= ([P ] − [H]2 + [Λ6]) , g8 ∶= [H]2
and g9 ∶= [P ].
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Suppose for the moment that we’ve shown the following claim.

Claim (*). We have γi ⋅ γj = gi ∪ gj for all pairs i, j.

Let h ∶ Γ8 → H4(X) be the map sending ∑aiγi to ∑aigi. Since {γi} is only a

generating set, there may exist v ∈ Γ8 that can be written as a linear combination of γi in

two different ways: v = ∑aiγi = ∑ biγi with ai ≠ bi for some i. We verify that in this case

also ∑aigi = ∑ bigi in H4(X), so that h is well-defined. Indeed, we have 0 = ∑(ai − bi)γi.

Then by bilinearity and claim (*),

0 = (∑(ai − bi)γi) ⋅ (∑(ai − bi)γi)

= (∑(ai − bi)gi) ∪ (∑(ai − bi)gi).

But H4(X) is positive-definite, so that ∑i(ai − bi)gi = 0. So h is well-defined.

Proof of claim (*). Let G ∶= (γi ⋅ γj)9
i,j=1, where ⋅ is the form on Γ8. We have

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0

0 0 0 −1 2 −1 0 0 0

0 0 0 0 −1 2 −1 0 0

0 0 0 0 0 −1 2 −2 0

0 0 0 0 0 0 −2 4 1

0 0 0 0 0 0 0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

By symmetry of ∪, it is enough to check equality of the terms above and including the
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diagonal. Let 1 ≤ i < j ≤ 6. We have

gi∪gj = [Λi−1]∪[Λj−1]−[Λi−1]∪[Λj]−[Λi]∪[Λj−1]+[Λi]∪[Λj] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 − 1 − 1 + 2 = 2 i = j

1 − 1 + 2 − 1 = −1 i = j − 1

1 − 1 − 1 + 1 = 0 i < j − 1

.

The remaining three cases with the first term equal to gi, 1 ≤ i ≤ 6 are

gi ∪ g7 = ([Λi−1] − [Λi]) ∪ ([P ] − [H]2 + [Λ6])

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 (by symmetry), 1 ≤ i ≤ 5

([Λ5] − [Λ6]) ∪ [Λ6] = 1 − 2 = −1, i = 6
,

gi ∪ g8 = ([Λi−1] − [Λi]) ∪ [H]2 = 0 (by symmetry),

gi ∪ g9 = ([Λi−1] − [Λi]) ∪ [P ] = 0 (by symmetry).

The remaining g7 cup products are

g7 ∪ g7 = ([P ] − [H]2 + [Λ6]) ∪ ([P ] − [H]2 + [Λ6]) = (2 − 1 − 1) − (1 − 4 + 1) + (−1 − 1 + 2) = 2,

g7 ∪ g8 = ([P ] − [H]2 + [Λ6]) ∪ [H]2 = 1 − 4 + 1 = −2,

g7 ∪ g9 = ([P ] − [H]2 + [Λ6]) ∪ [P ] = 2 − 1 − 1 = 0.

Finally,

g8 ∪ g8 = [H]2 ∪ [H]2 = 4,

g8 ∪ g9 = [H]2 ∪ [P ] = 1,

g9 ∪ g9 = [P ] ∪ [P ] = 2.

Therefore also G = (gi ∪ gj)9
i,j=1, which completes the proof of claim (*).

By bilinearity of ⋅ and ∪ and claim (*), h is in fact a map of lattices, i.e. v ⋅ w =
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h(v) ∪ h(w) for any v,w ∈ Γ8. If w ∈ ker(h), then w ⋅ w = 0, so h(w) ∪ h(w) = 0 and

h(w) = 0, hence ker(h) = 0. (here we again use that the lattices Γ8 and H4(X) are

both positive-definite), so h is injective. By theorem 4.2, H4(X) has rank 4(1 + 1) = 8;

it follows that the image h(Γ8) is a full-rank sublattice of H4(X). By lemma 2.2, Γ8

is unimodular and so, because h is a morphism of lattices, h(Γ8) is again unimodular.

Therefore by corollary 2.1 H4(X) = h(Γ8) and h is surjective. Therefore Γ8 and H4(X)

are isomorphic lattices, with one isomorphism given by h.

5.3.2 The general case

This section is devoted to showing that slight generalizations of the arguments and con-

structions of the previous section work in the general case. For this section, X =X(2,2)

is a smooth complete intersection of two quadrics in P4k+2 (k ≥ 1).

Incidence correspondence

Proceeding as before, let Z denote the incidence correspondence

Z ∶= {(Λ,Q} ∶ Λ ⊂ Q} ⊂ G(2k,4k + 2) × PN ,

with N = (4k+4
2

) − 1. Let π1 and π2 denote the restrictions to Z of the projections of

G(2k,4k+2)×PN to G(2k,4k+2) and PN , respectively. By the same argument as in the k =

1 case, each fibre of π1 over G(2k,4k+2) is biregular to Pm, where m ∶= ((4k+4
2

)−(2k+2
2

))−1 =

N −(2k+2
2

). The dimension of the Grassmannian G(2k,4k+2) is (2k+1)(2k+2) = 2(2k+2
2

),

hence Z is irreducible of dimension N +(2k+2
2

) by upper-semicontinuity of fibre dimension

and its corollary 5.1. By the same theorem, since the projection of Z to PN is surjective,

we find that a fibre over a generic quadric Q ∈ PN is (2k+2
2

)-dimensional. It follows by

the same arguments as before that the fibre over every smooth Q is (2k+2
2

)-dimensional.

Write ΓQ ∶= {Λ ∈ G(2k,4k + 2) ∶ Λ ⊂ Q} = π1(π−1
2 (Q)). Then the Poincaré dual class [ΓQ]

is a class in the middle cohomology H2(2k+2
2
)(G(2k,4k + 2),Z).
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There is at least one 2k-plane contained in X

We need to show that for any smooth quadrics Q, Q′ in P4k+2 the cup product [ΓQ] ⋅[ΓQ′]

is positive. As before, the class σ1,2,...,2k+1 is self-dual, so it is enough to show that

[ΓQ] ⋅ σ1,2,...,2k+1 > 0. Let F be a choice of complete projective flag in P4k+2 such that

the intersection of Q with P1 consists of two distinct points and the intersection of Q

with each other element of the flag is smooth. The conditions for a 2k-plane to be in

SF1,2,...,2k+1 ∩ ΓQ are

0). Λ ⊂ Q

1). Λ intersects P1 in a point

2). Λ intersects P3 in a line

⋮

2k). Λ intersects P4k−1 in a P2k−1

2k+1). Λ is contained in P4k+1.

We have

Proposition 5.3. For k ≥ 1, the number of 2k-planes Λ in P4k+2 satisfying conditions

0). – 2k + 1). above is 22k+1.

Proof. We proceed by induction on k, with the base case k = 1 proved as part of lemma

5.3. As in the case k = 1, Q ∩ P1 consists of two points, one of which must be contained

in Λ. Let p be this point. Further, Q ∩ P3 is smooth, hence contains exactly two lines

passing through p, one of which must be contained in Λ. Denote this line by `.

Now let V be the (4k + 3)-dimensional vector space corresponding to P4k+2, W the

2-dimensional subspace of V corresponding to the line ` and let F be the nondegenerate

symmetric bilinear form defining the quadric Q ⊂ P4k+2. A choice of 2k-plane Λ containing

` and contained in Q corresponds to a (2k + 1)-dimensional subspace P of V containing
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W such that F ∣P ≡ 0. The (2k+1)-dimensional subspaces of V containing W correspond

to (2k−1)-dimensional subspaces of V /W . Let W ⊥ ∶= {v ∈ V ∶ F (v,w) = 0 for all w ∈W}.

Because F is nondegenerate, W ⊥ is (4k + 1)-dimensional, hence W ⊥/W is a (4k − 1)-

dimensional subspace of V /W . Then F descends to a well-defined nondegenerate bilinear

form on W ⊥/W , hence defines a smooth quadric Q′ ⊂ P(W ⊥/W ) ≅ P4(k−1)+2.

Hence, each 2(k − 1)-plane Λ′ contained in Q′ ⊂ P(W ⊥/W ) ≅ P4(k−1)+2 corresponds to

a 2k-plane Λ in P4k+2 containing p, ` (fixed above) and contained in Q. Moreover, one

checks that this correspondence is 1-1 (for example by an argument by contradiction as

in the end of the proof of lemma 5.3).

Letting 0′) stand for the condition Λ′ ⊂ Q′, we see that Λ satisfies 0),1) and 2) (with

p and ` fixed in the beginning of the argument) if and only if Λ′ satisfies 0′).

We now show that conditions 3). – 2k + 1) on Λ have natural equivalents for Λ′.

Label the vector spaces composing the flag F as follows:

V1 ⊂ V2 ⊂ ⋯ ⊂ V4k+2 ⊂ V4k+3.

By the choice of flag, the intersection P(Vm)∩Q is smooth, hence induces a nondegenerate

symmetric bilinear form Fm on Vm by restriction. From now on, we omit the subscript

on Fm. For m ≥ 4, W ⊂ Vm and we define W ⊥
m ∶= {v ∈ Vm ∶ F (v,w) = 0 for all w ∈ W}.

The dimension of W ⊥
m is m − 2 and we have W ⊥

m = Vm ∩W ⊥
4k+3. Hence we may form the

complete flag

W ⊥
4 /W ⊂W ⊥

5 /W ⊂ ⋯ ⊂W ⊥
4k+2/W ⊂W ⊥

4k+3/W.

Projectivizing gives a complete projective flag in P4(k−1)+2.

Let P continue denoting the (2k + 1)-dimensional vector space corresponding to Λ.

Now condition n) for n ≥ 3 is that P intersects V2n−1 along a n-dimensional subspace S2n−1.

We have W ⊂ S2n−1 ⊂ P , so the restriction of F to V2n−1 must vanish identically on S2n−1.

Arguing as before, this implies that necessarily S2n−1 ⊂W ⊥
2n−1, so that the 2(k − 1)-plane

Λ′ intersects P(W ⊥
2n−1/W ) ≅ P2(n−2)−1 along P(S2n−1/W ) ≅ P(n−2)−1 for n = 3, . . . ,2k + 1,
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or, relabeling, Λ′ intersects P2n′−1 along a Pn′−1 for n′ = 1, . . . ,2k − 1. By the induction

hypothesis, there are 22(k−1)+1 planes Λ′ satisfying the conditions above. Finally, taking

into account the four possibilities for the choice of p and ` made in the beginning of the

argument, we find that there are a total of 22k+1 planes Λ satisfying the conditions 0) –

2k + 1), as desired.

Identification of the lattice

The pairwise cup products of the classes P,Λ0, . . . ,Λ4k+3 are

[P ] ⋅ [P ] = (−1)2k ⌊1 + 2k

2
⌋ = k + 1,

[Λi] ⋅ [Λi] = (−1)2k ⌊1 + 2k

2
⌋ = k + 1, i = 0, . . . ,4k + 3,

[P ] ⋅ [Λi] = (−1)2k−1 ⌊1 + 2k − 1

2
⌋ = −k, i = 0, . . . ,4k + 3,

[Λi] ⋅ [Λj] = (−1)2k−2 ⌊1 + 2k − 2

2
⌋ = k, i, j = 0, . . . ,4k + 3, i ≠ j.

Let H ⊂X be a hyperplane section. Then

[H]2k ⋅ [P ] = deg(P ) = 1,

[H]2k ⋅ [Λi] = deg(Λi) = 1, i = 0, . . . ,4k + 3,

[H]2k ⋅ [H]2k = deg(X) = deg(Q1) deg(Q2) = 4.

Let γ1, . . . , γ4k+5 be the generators of Γ4(k+1) from lemma 2.3. Let

gi ∶= ([Λi−1] − [Λi]) , i = 1, . . . ,4k + 2, g4k+3 ∶= ([P ] − [H]2k + [Λ4k+2]), g4k+4 ∶= [H]2k
and g4k+5 ∶= [P ] .

One verifies that γi ⋅γj = gi∪gj for all i, j = 1, . . . ,4k+5, hence obtaining an embedding of

lattices hk ∶ Γ4(k+1) → H4k(X), as before (the fact that hk is an embedding follows from

the fact that both lattices are positive-definite). Then theorem 4.2 gives that the rank of

H4k(X(2,2)) is 4(k + 1), so that hk(Γ4(k+1)) embeds as a full-rank sublattice of H4k(X).
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Since Γ4(k+1) is unimodular, this shows that the map hk is an isomorphism. We have

Theorem 5.4. The cup product lattice of a complete intersection of two smooth quadrics

in P4k+2 is the Γ
4(k+1)

lattice.
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